Behavioral Cloning

ESE 6510
Antonio Loquercio

Philadelphia,
1957

Behavioral Cloning: Agenda

* Theoretical Foundations

* Tools for Data Collection

* Algorithms

* Leveraging foundation models

* Challenges

Behavioral Cloning: Algorithms

* General optimization problem

0" = argmaxg z logmg (a;|s;)

ai,Si~Pr*

* Instantiation example:

0* = argmaxy z | a; —NNg(s;) I,

ai,Si~ P
* we assume that my (the conditional of actions with respect to states) is a
gaussian with fixed variance and the prediction of a neural network (N Npy)
conditioned on the state as mean.

Behavioral Cloning: Algorithms

* General optimization problem

0" = argmaxg z logmg (a;|s;)

ai,Si~Pr*
* Things we can decide:
* How to collect the data?
* How to represent the input?
* How to represent the actions?
* How to model the training process?

Data Collection Algorithm: DAGGER

* What we can optimize (p,+is the trajectory distribution of the expert):

0* = argmaxgy z log mg (a;|s;)

a,Si~Pr*

* What we should to optimize (pne is the trajectory distribution of the
student):

0* = argmaxy z logmg (a;]s;)

ai,Si~Prg

Data Collection Algorithm: DAGGER

* Very simple idea: let the student control the robot, and collect
demonstrations from the states that the student observed, not from
the states that the expert observes.

Student’s

Trajectory
Demonstration

Trajectory

Data Collection Algorithm: DAGGER

* Very simple idea: let the student control the robot, and collect

demonstrations from the states that the student observed, not from
the states that the expert observes.

* This process is called dataset aggregation (Dagger). Improved
theoretical bound on performance (linear in the episode length).

1. train my(a;|o;) from human data D = {0y,a1,...,0x,ay}
2. run mp(asos) to get dataset D = {01,...,0n/}

[3. Ask human to label D, with actions a;]

4. Aggregate: D < D UD,

Adapted from S. Levine A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, 2010

Data Collection Algorithm: DAGGER

 What’s the problem with DAGGER?

* You need to ask a human to recollect labeled data after each training
step!

e Often, this is not how you run it. You complete a set of full training
sessions and then collect corrective behaviors as needed (people call

this “batch” dagger).

* Done in practically all BC papers today (either consciously or
unconsciously)

Behavioral Cloning: Algorithms

* General optimization problem

0" = argmaxg z logmg (a;|s;)

ai,Si~Pr*
* Things we can decide:
* How to collect the data?
* How to represent the input?
* How to represent the actions?
* How to model the training process?

Input Representations

* Remark: We never process “raw” data. There is always some
processing of sensory data before it is fed to a decision module.

Minimal Explicit
Representations Representations

Objects pose,

RGB array Image Features robot state

(e.g., CLIP features)

Task-agnostic / Faster

Ease of training/generalization

Minimal Input Representations

* Advantages:

* General and simple (often a ResNet-18 or VIT-Small)
* Trained specifically for the task(s) of interest

* Disadvantages:
* Large sample complexity
* Requires a high-capacity (and potentially high-latency) NN

Intermediate Representations

* Popular Encoders:
e (Dense image features): CLIP, SigLIP, Dyno, ...
* (Sparse image features): SIFT, SUREF, ...

* People often use the pre-trained image encoders even for non-visual data
(e.g., tactile).

* (V)AE trained on unlabeled robot data.

* Depth/Optical Flow, etc.

Intermediate Representations: An Example

In-the-Wild Data Masked Autoencoder Real-World Robotic Tasks

Over 4.5 million images (a) Masking (b) Autoencoder Two robots (xArm, Allegro hand)
. Eight tasks (scenes, objects)

Five diverse data sources

Decoder

T

Encoder

Real-World Robot Learning with Masked Visual Pre-training, 2022

Intermediate Representations

* Advantages:
* Simple and effective
* Inherits robustness from pre-training (e.g., illumination invariance)
* Most popular alternative for VLA-style networks

e Disadvantages:
* Pre-trained encoders might not capture the features you need for the task
* Still large sample complexity

Explicit Representations

Obj. Pose,

Robot pose,

obstacles, At
etc.

Explicit Representations

Reconstructing Hand-Held Objects in 3D; J. Wu, G. Pavlakos, G. Gkioxari, J.Malik. Arxiv 2024.

Explicit Representations

* Advantages:
* Sample efficient if well designed
* Robust to input variations (if the sensing module is good enough)
* Interpretable (if that’s important for your task)

* Disadvantages:

e Often quite specific for the task. Multi-task explicit representations are hard
to design.

* Highly reliant on the (separately trained) sensing module.
* Latency

* Compute
e Failure cases

Recap: Input Representations

 Minimal (e.g., RGB Array)
* Intermediate (e.g., a pre-trained vision encoder like CLIP)

 Explicit (e.g., estimated object pose)

Behavioral Cloning: Algorithms

* General optimization problem

0" = argmaxg z logmg (a;|s;)

ai,Si~Pr*
* Things we can decide:
* How to collect the data?
* How to represent the input?
* How to represent the actions?
* How to model the training process?

Action Representations

* Remark: We (almost) never output direct motor torques. There is often some
layer of low-level controllers after a policy. The more high-level, the more
complex the controllers need to be.

Low-level actions High-Level actions
Joint Positions, Body Trajectory Skills

Body Accelerations (e.g., pick, place, etc.)

Task-agnostic / Faster

Ease of training/generalization

Low-Level Action Prediction

* Generally, joint position (e.g., for manipulators) or body accelerations
(e.g., for drones)

* A bit more complicated than it looks. The cascade of PID controllers
needs to be well-designed to function effectively.

e Often, we use more fancy controllers than a PID:
* Adaptive controllers (if some parameters are unknown or hard to model)
* Impedance controllers (very common in manipulation)

Low-Level Action Prediction

* Advantages:

* General and simple

* Disadvantages:

* Large sample complexity
* Policy needs to be very fast to control at such low-level

e Currently, this works well for RL, but it’s not so popular in BC.

Mid-Level Action Prediction

* There is a lot of leeway in the definition of these actions:

* Joint position sequences
* Position/Velocity sequences of end effectors

* The controllers’ complexity increases...

Mid-Level Action Prediction: An example

N N
Inverse (Admittance) e A———— hd Qk_’
Kinematics Controller) ~-.r
: P4)
|

10Hz 20Hz 50-100Hz >500Hz

* All blocks must be properly designed/tuned.

* Side note: these are the same blocks that are in place during data
collection (see last lecture’s slides). Therefore, the operator can potentially
account for some limitations of the controllers.

Mid-Level Action Prediction

Ttt+K

* Advantages:
* Lowers the frequency at which the policy needs to operate.
e Simplifies learning.
* Easier to add constraints to the policy (e.g., a safety filter).

e Disadvantages:
» Latency/Compute of the controllers.
* Potentially bottlenecked by what the controllers can do.

* This is the most popular approach for BC right now.

High-Level Action Prediction

* The policy outputs a desired behavior (e.g., pick an apple), and the
right skill is selected from a library to execute the desired behavior.

Desired
Behavior

* The policy effectively works as a planner/state machine.

* The skill library comprises a set of lower-level policies, some of which
could be trained using BC/RL or other optimization methods.

High-Level Action Prediction: An Example

Mobile Manipulation PaLM-E: An Embodied Multimodal Language Model

g ViT

Human: Bring me the rice chips from the

drawer. Robot: 1. Go to the drawers, 2. Open

top drawer. | see . 3. Pick the green rice

chip bag from the drawer and place it on the Control
counter.

Visual Q&A, Captioning ... S)
escribe the

Given . Q: What's in the following

image? Answer in emojis. A dog jumping
J-#0004. over a hurdle at a
dog show.

Given <emb> ... Q: How to grasp blue block? A: First, grasp yellow block

Large Language Model (PaLM)

Task and Motion Planning

Given <emb> Q: How
to grasp blue block?
A: First grasp yellow
block and place it on
the table, then grasp
the blue block.

Tabletop Manipulation

Given Task: Sort
colors into corners.
Step 1. Push the green
star to the bottom left.
Step 2. Push the green
circle to the green star.

A: First, grasp yellow block and ...

Language Only Tasks

Here is a Haiku about

embodied language models: Q: Miami Beach borders which ocean? A: Atlantic.
Embodied language Q: Whatis 372 x 187 A: 6696.

models are the future of Language models trained on robot sensor data can
natural language be used to guide a robot’s actions.

PaLM-E: An Embodied Multimodal Language Model, 2023

High-Level Action Prediction

Desired

. To.
Behavior tit+K

* Advantages:
* Policy can operate at a low frequency.

* Disadvantages:
* If you don’t have a skill for something, the policy can’t do anything.

* Most people don’t call training these policies as BC. Often you need no
training at all: you can use VLMs zero-shot for planning.

Recap: Action Representations

* Low-Level Control (e.g., body acceleration)
 Mid-Level Control (e.g., end-effector position sequence)

* High-Level Control (e.g., skills)

Behavioral Cloning: Algorithms

* General optimization problem

0" = argmaxg z logmg (a;|s;)

ai,Si~ P+
* Things we can decide:
* How to collect the data?
* How to represent the input?
* How to represent the actions?
 How to model the training process?

The Training Process

* 0 = argmaxg Zai,si~pn* log g (a;s;i)

* 07 = argmaxg g, 5,~p . I @ —NNg(s;) lI; for a particular action
distribution choice. This makes it a traditional regression problem.

* Why isn’t this always enough?

* Multi-modality in the demonstrations
* Multi-modality in the optimal policy

The Training Process

Possible solutions to the problem:
 Discretization of the action space

* Learn a more expressive distribution
* Mixture of Gaussians
e Diffusion
* Latent actions

Action Space Discretization

* Simple idea: divide actions into bins.

Visual Representation of Discretization

_____ === Continuous Path

* You don’t predict anymore a continuous
value, but a probability over bins.

* This automatically accounts for
multi-modality.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

e Common approach:

* Uniform discretization with 256 bins over each coordinate (using the 1st and 99th
guantile of the actions in the training data as the minumum and maximum values,
respectively)

Action Space Discretization

* Can | predict action dimensions independently?
 Assume | do, that’s how the distribution will look:

TL'(CltlSt) — T[(at’olSt)T[(atJ|St)7'[(at,2|5t) -
* This implicitly assumes that action dimensions are independent given the state.
Not really a good assumption.

 Let’s try to remove the independence assumption:
TL'(at|St) — T[(at,o‘st)n(atjl‘st, atjl)ﬂ(at,g‘st, at,z, at’l)

* Does this formulation remind you of something?

Action Space Discretization: Autoregressive Prediction

Ll -l B
I T i W

sequence N sequence ||| Sequence

model block model block model block

Image adapted from S. Levine

Action Space Discretization: An Example

Q: \é\r?ct) should E?hi:rcl).t.)ot RT—2

) C J)

ViT C J J J
—

AT=1[0.1,-0.2, 0] ‘

A: 132114 128 5 25 156 >

De-Tokenize AR=[10, 25, -7]

Robot Action

* The model outputs a set of strings (tokens), each of which is mapped
to an action (delta translation and rotation of end effector).

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Action Space Discretization: FAST

1 2 3
124 12 =3 12
Discrete
Cosine -86
Transform
(DCT) Quantize 344 3 1 1 5
— 0 all —
N W W 178 15 -1 -2

Normalized action chunk

Frequency cokponents Sparse frequency matrix

\L Flatten
- Byte 5 124 -86 344 -45 178 B428 o 3 0 15 eee
Pair
124 -86 344 -45 178 12 0 3 0 15 Encoding
(BPE) 978 233 19 1022 1
Low-frequency components first H Compressed action tokens

* Apply DCT to convert actions to the frequency domain. Then, quantize the DCT
coefficients and use byte-pair encoding (BPE) to compress the flattened sequence
of per-dimension DCT coefficients into the final action token sequence.

FAST: Efficient Action Tokenization for Vision-Language-Action Models, 2025

Action Space Discretization: FAST

* The way you discretize actions has a
large impact on performance and
training speed!

80

70

60

50

40

30

20

10

]

4 5x faster
VLA Training

.

O

%] 100k 200k 300k 400k

B m,+ FAST (ours) [Jm,

500k

600k

700k

Action Space Discretization

R Visual Representation of Discretization
e Advantages: |

,,,,, —== Continuous Path
—e— Discretized Path

e Simple
e Effective

* Disadvantages:

e Resolution of action space

* You lose the inductive bias of continuous values (0.1 is closer to 0.2
than 0.5, but has equal “distance” to them in discrete space).

The Training Process

Possible solutions to the problem:
 Discretization of the action space

* Learn a more expressive distribution
* Mixture of Gaussians
e Diffusion
* Latent actions

Expressive Continuous Action Distributions

* Predict a (parametric) continuous distribution directly.

* Example: parameters of a mixture of gaussians (e.g, Implicit Behavioral
Cloning, 2021)

* Directly optimize the BC problem:
0" = argmaxgy 2 log g (a;|s;)

ai,Si~Pr*

Expressive Continuous Action Distributions

e Do we need the whole distribution at test time?

* Generally, no (exception: we want to be aware of uncertainty)
* What we need is a sample from that distribution.
* Does this problem remind you of something?

Generative Models

Representation space Data space

Generator

* High-level Objective: Transform a “simple” distribution, e.g., a unit
Gaussian, into a complex distribution.

* Why is it possible? The Manifold Hypothesis

Image from “Foundations of Computer Vision”

Generative Models

Representation space Data space

Generator

* Two types of generative modeling:

* Direct: Predict the whole distribution (e.g., mixture of gaussians, as before)

* Indirect: Transform a sample from the starting distribution into a sample from
the goal distribution (recently popularized by genAl).

* Like genAl, indirect methods are the most popular in robot learning.

Image from “Foundations of Computer Vision”

Generative Models: Variational Auto-Encoders

* Train an encoder to map a point into the mean and std of a
distribution, sample from it, and decode the output.

Image from “Foundations of Computer Vision”

Generative Models: Variational Auto-Encoders

qy(2) Po(x)

= Eynp, N (%: 95 (2), 97 (2))]

Training iters

* Trained with reconstruction loss.
* At test time, you can throw the encoder and sample from the decoder.

Image from “Foundations of Computer Vision”

Generative Models: Conditional Variational Auto-Encoders

. e Latent state 1 Possible future 1
* Providing additional information zo = [1, —1]
to the generator is a process O
called “conditioning”. R——
Y|XJZ1
* This enables us to model a O
conditional distribution. Possible future 2
X

* What type of conditioning is — ()
very common in genAl? 2y = [1,1] y|x, 25

?

Image from “Foundations of Computer Vision”

Generative Models: Conditional Variational Auto-Encoders

* In robotics, where we are trying |Latentstate1 Possible future 1
to model wy(a;ls;), we should z2 = [1, 1]
naturally condition on the O
“state” (e.g., sensor Observation
observations) ylx, 21

O

Possible future 2

* Additional conditioning, e.g.
text, are common in multi-task

settings. O
Latent state 2

z, = [1,1] y|x, 2o

Conditional Variational AE in Robotics: ACT

* Action-Chunking Transformer (ACT).

* Training Time: Action sequence reconstruction loss + z regularization.

/)

action sequence

2 style variable hy (B-BH-E-AE B
(\ (A s N
transformer J /\ transformer transformer
encoder e encoder decoder
. /\ . A A A A " = 3
l__L' |£| 7\ A A 7\ A \ |£| &I ‘ ‘ ‘ ﬁ |J__|
Q N B D] /\ [D;'D]'“[l___l;']
[CLS] joints action sequence + PosEmb 480X640X3 ENN

ot cam 1 cam 4 jointsZ) position embeddings (fixed)

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023

-

Conditional Variational AE in Robotics: ACT

* Action-Chunking Transformer (ACT).
e Test Time: Put z to zero (mean of distribution)

action sequence

> [D---[\ -~ 000
A 1
\ s R (h
,« /\ transformer transformer
S~ encoder decoder
/\ A A / A / g A g
D -Tood seso-o
L \[D;-[I]“-[D;-l:l]
+F()‘;l:JEr:an cam 1 cam4 joints 2 position embeddings (fixed)
1
0

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023

Conditional Variational AE in Robotics: ACT

* Interesting find: The conditional VAE is particularly helpful with
human data, but unimportant with scripted data.

60 -1%

success (%)
W 5
o (4]

—
4}

-33.3%

Scripted Data Human Data

M With CVAE " No CVAE

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023

Generative Models: Diffusion

Forward diffusion process

~
7
[T 17 117 I (E] O I
| | | [] D i B
= = :
C [| B
[a] ‘
|
] B]
1]) |C]] 1] |] I O
11 T 1 T [|| [T] [|1 [l i) i
Reverse diffusion process >
B 5] i =L ISl =] B TEE]
m 1 | 1T
:H | | |
a | mn
=l e
£] 5
o
= [Il
I | | M| (7 I I 1
= IS ST T TT L IHEEE EEEEE 1 I
R pest™” > "“
0 ‘.ﬂ‘ . .0'
XT ""‘ ¢“" .: o
““ “"‘ . .:
o"' X < v
‘¢“ .0' o
o #*f ..’. .o”’ .
I“‘ .’ "0 -‘
- o s
{ T oI [TSIE]
"aaa 5 H
i & f o
: 0]
[
- -
) | EECSE
N EEEEE I

Image from “Foundations of Computer Vision”

Connection between Diffusion and VAE

Let’s do multiple passes of the decoder

Let’s make this a fixed function: adding Gaussian noise with
“randomized” standard deviations

Connection between Diffusion and VAE

A diffusion model is equivalent to a hierarchical VAE with a noising
encoder!

p(zo|z1) p(xi_1|xs) p(x|rii) p(xr_1|xT)
D 4 T 7 D 4
q(x1|xo) q(x¢|xi—1) q(xes1|xe) g(xr|Tr_1)

Understanding Diffusion Models: A Unified Perspective, 2022

Conditional Diffusion

* Like conditional VAEs, additional inputs are given to the decoder to
model conditional distributions.

Denoising >
_H: [T [T T HIT‘ HI}

-
=t
e . .
. .
. . o
.
Ry . o
.t » 0
. L "
ot - -
.* ¥ *
'. - *
. - -
. D .
.

.
+
+
*
*
*
*
-
+
»
.
»
.
-
.
+
o
*

. .
.
- .
. .
. .
.
.
.
.
.
*
.
.
.
-
.

.
.
.
.
.
.
.
.
-
.
st

.
.
as

e

LT T T T
B
=

A profile photo
of a robin,
facing left.

X 9 Y Yi—1

Image from “Foundations of Computer Vision”

Conditional Diffusion in Robotics: Diffusion Policies

* The denoiser €4 is conditioned on the robot end effector pose and
image sequence 0, and the previous step denoised output A, .

* Run the denoiser €q4 for K steps.

Input: Image Observation Sequence Observation O. O __ __

: : - san o *
:_ : :0‘*“| S @ fc{]ﬂ'ﬂ D Cross Attention
- a x+b -
Diffusion Policy £¢(O, A, k) » e FConviD Action Emb
| - x: Action Emb x K > o g [*K
S d 4ConviD E a
. p] - g a- X + b E’ %
Action Sequence A: A S JConviD = g
Prediction Horizon T, Avs BB FiLm X Action Emb 5 / Action Emb
j i . > itioni ConviD A
a | | | conditioning
- - I
Output: Action Sequence a) Diffusion Policy General Formulation b) CNN-based c) Transformer-based

Diffusion Policies, 2023

Diffusion Policies: Capturing Multi-Modality

Diffusion Policy LSTM-GMM

IBC

Diffusion or C-VAE for BC in Robotics?

* The advantage of C-VAE is that it is simpler to implement and requires
less computation at test time.

* The advantage of diffusion lies in its widespread adoption in GenAl,
allowing us to leverage the latest advancements (e.g., classifier-free
guidance, shortcut models, etc.). However, it requires more
computation at test time.

* Diffusion is much more popular today in robot learning papers. It
appears to be empirically superior to C-VAE.

* Probably not so much of a difference in the low-data regime at which
we generally work in academia.

A Common Ingredient in Diffusion Policies and ACT

* Multi-step action prediction (i.e., a chunk) is key to performance!

50

37.5

success (%)
[\e]
(8]

12.5

w

success (%)

Relative Perf Chan

0 1
1 10
fully-closed-loop

Qurs

100 200 400
k fully-open-loop
BC-ConvMLP VINN

ACT

Action Horizon

1 2 4 8 16 32 64 128
Action Horizon (steps)

Diffusion Policies

A Common Ingredient in Diffusion Policies and ACT

e Key advantage of chunking: decreasing the “effective” network’s
latency while increasing smoothness.

Model

Latency Temporal smoothing:
Average overlapping predictions

Inference Starts Inference Ends

A Common Ingredient in Diffusion Policies and ACT

e Key advantage of chunking: decreasing the “effective” network’s
latency while increasing smoothness.

* However, you must be careful!

inference starts

(o
Ao @ az a, aa ¢

. temporal
naive async P
ensemble
obstacle
Qr
1]
L' 7 (24’:)
- Q’
inference delay, d 13 p
. o v A,

inference finishes

Real-Time Execution of Action Chunking Flow Policies, 2025

A Common Ingredient in Diffusion Policies and ACT

e Key advantage of chunking: decreasing the “effective” network’s
latency while increasing smoothness.

* However, you must be careful!

* This is a significant advantage compared to Autoregressive policies,
which must wait for the prediction of one action to be completed
before starting the next one.

L - e
at.o at,l’\ at 2
I T

sequence ||| sequence

sequence
model block model block model block

A Common Ingredient in Diffusion Policies and ACT

Action Horizon

© o o
N = O

o
~

N

Why does performance

1 2 4 8 16 32 64 128 decrease for longer
Action Horizon (steps) prediction horizons?

Relative Perf Change
o o O O ¢
a w

O
o

| have not discussed many important details...

* Flow-matching instead of diffusion?

* How to cope with potentially bad demonstrations (e.g., the operator stops
to see how to proceed)?

* What architecture to use for prediction (transformer, resnet, ...) and how to
parametrize the conditioning process?

* How to estimate inference delays in real time?

* How to parametrize actions (joint position, end-effector position, etc.)?

How a well-designed BC algorithm looks like

Algorithm 1 Real-Time Chunking

Require: flow policy 7 with prediction horizon H, minimum execution horizon Smin, mutex M, condition ° A I t f | 't 1 ft
variable C associated with M, initial chunk A, initial delay estimate dini, delay buffer size b, number of O O CO l I I p eX I y I S O e n

denoising steps n, maximum guidance weight 3

é pro:e;iu(;'.e }Iltj:tTrliifS‘l){ikill ?]”lrlATE > Initialize mutex-protected shared variables O Ve r I O O ke d i n C O n Ve rS at i O n S
3: function GETA Called i lof At b 11 1
x unc‘:;:)ltllMEchi?rlgiNéz t) i> Called at an interval of At by controller a b O ut BC a I go rlt h m S .
5: t=t+1
6: Ocur = Onext
7: notify C
8: return A [t — 1]
9: procedure INFERENCELOOP > Run inference in a looping background thread
10: ire M M M
11: aQCq:;eew Queue([disic], maxlen=b) > Holds a limited buffer of past inference delays * I_I ke I n R L m et h O d S)
12: loop
13: it on C until ¢ > Spmin : : :
14: ‘;i t(m " =° > s is the number of actions executed since last inference started effe Ct I Ve Sy Ste m e n g I n e e r I n g
15: Apev = Acwe[s, s+ 1,...,H—1] > Remove the s actions that have already been executed
16: = Ocur [}] .]
17: Z = I(I)lax(Q) > Estimate the next inference delay conservatively I S C r u C I a | tO a C h I e V I n g go O d
18: with M released do
19: A ew = GUIDEDINFERENCE(T, 0, Aprev, d, S) f
20: Acr = Apew ' > Swap to the new chunk as soon as it is available p e r O r m a n C e .
21: t=t—s > Reset ¢ so that it indexes into A ey
22: enqueue t onto Q > Record the observed delay

23: function GUIDEDINFERENCE(T, 0, Apry, d, 5)
24: compute W using Eq. 5; right-pad A e, to length H; initialize A° ~ A(0, 1)
25: for 7 = 0 to 1 with step size 1/n do

26: fa=A" A +(1-1)v:(A0,7) > Define denoising function (Eq. 3)

27: e= (Ap,ev - f?(AT)) ! diag(W) > Weighted error term from Eq. 2

28: g=e€- % Arar > Compute vector-Jacobian product from Eq. 2 via autodiff

29: A™tE = A7 + % (v,r(AT, 0,7) + min (,8, 3_;;) g) > Integration step (Eq. 1)
return A'

Real-Time Execution of Action Chunking Flow Policies, 2025

Recap: The Training Process of a BC Policy

We have seen three main types of training processes for BC policies:

 Explicit Action Prediction:

* Directly predict an action given an observation. Either continuous or
categorical.

* Direct Density Prediction (Implicit BC):
* Predict a full distribution over actions, e.g., a mixture of Gaussians.

* Indirect density Prediction (Diffusion, C-VAE):
* Predict a sample from the target (conditional) distribution.

* The latter is right now the most popular in robot learning papers.

Aside: My opinion on generative action prediction

* | am hesitant to believe this story about the multi-modality of the
conditional action distribution being the reason why we need
generative models.

* What’s the probability of being in a purely multi-modal state? Having
a history of observations potentially decreases this probability...

Aside: My opinion on generative action prediction

* | am hesitant to believe this story about the multi-modality of the
conditional action distribution being the reason why we need
generative models.

* What’s the probability of being in a purely multi-modal state? Having
a history of observations potentially decreases this probability...

* | believe that the real reason why generative models are so successful
in robot learning is that collecting data is challenging, and particularly
at scale, humans make numerous mistakes.

 Generative models are better able to “absorb” these mistakes than
explicit action prediction methods.

Behavioral Cloning: Agenda

* Theoretical Foundations

* Tools for Data Collection

* Algorithms

* Leveraging foundation models

* Challenges

	Slide 1: Behavioral Cloning
	Slide 2: Behavioral Cloning: Agenda
	Slide 3: Behavioral Cloning: Algorithms
	Slide 4: Behavioral Cloning: Algorithms
	Slide 5: Data Collection Algorithm: DAGGER
	Slide 6: Data Collection Algorithm: DAGGER
	Slide 7: Data Collection Algorithm: DAGGER
	Slide 8: Data Collection Algorithm: DAGGER
	Slide 9: Behavioral Cloning: Algorithms
	Slide 10: Input Representations
	Slide 11: Minimal Input Representations
	Slide 12: Intermediate Representations
	Slide 13: Intermediate Representations: An Example
	Slide 14: Intermediate Representations
	Slide 15: Explicit Representations
	Slide 16: Explicit Representations
	Slide 17: Explicit Representations
	Slide 18: Recap: Input Representations
	Slide 19: Behavioral Cloning: Algorithms
	Slide 20: Action Representations
	Slide 21: Low-Level Action Prediction
	Slide 22: Low-Level Action Prediction
	Slide 23: Mid-Level Action Prediction
	Slide 24: Mid-Level Action Prediction: An example
	Slide 25: Mid-Level Action Prediction
	Slide 26: High-Level Action Prediction
	Slide 27: High-Level Action Prediction: An Example
	Slide 28: High-Level Action Prediction
	Slide 29: Recap: Action Representations
	Slide 30: Behavioral Cloning: Algorithms
	Slide 31: The Training Process
	Slide 32: The Training Process
	Slide 33: Action Space Discretization
	Slide 34: Action Space Discretization
	Slide 35: Action Space Discretization: Autoregressive Prediction
	Slide 36: Action Space Discretization: An Example
	Slide 37: Action Space Discretization: FAST
	Slide 38: Action Space Discretization: FAST
	Slide 39: Action Space Discretization
	Slide 40: The Training Process
	Slide 41: Expressive Continuous Action Distributions
	Slide 42: Expressive Continuous Action Distributions
	Slide 43: Generative Models
	Slide 44: Generative Models
	Slide 45: Generative Models: Variational Auto-Encoders
	Slide 46: Generative Models: Variational Auto-Encoders
	Slide 47: Generative Models: Conditional Variational Auto-Encoders
	Slide 48: Generative Models: Conditional Variational Auto-Encoders
	Slide 49: Conditional Variational AE in Robotics: ACT
	Slide 50: Conditional Variational AE in Robotics: ACT
	Slide 51: Conditional Variational AE in Robotics: ACT
	Slide 52: Generative Models: Diffusion
	Slide 53: Connection between Diffusion and VAE
	Slide 54: Connection between Diffusion and VAE
	Slide 55: Conditional Diffusion
	Slide 56: Conditional Diffusion in Robotics: Diffusion Policies
	Slide 57: Diffusion Policies: Capturing Multi-Modality
	Slide 58: Diffusion or C-VAE for BC in Robotics?
	Slide 59: A Common Ingredient in Diffusion Policies and ACT
	Slide 60: A Common Ingredient in Diffusion Policies and ACT
	Slide 61: A Common Ingredient in Diffusion Policies and ACT
	Slide 62: A Common Ingredient in Diffusion Policies and ACT
	Slide 63: A Common Ingredient in Diffusion Policies and ACT
	Slide 64: I have not discussed many important details…
	Slide 65: How a well-designed BC algorithm looks like
	Slide 66: Recap: The Training Process of a BC Policy
	Slide 67: Aside: My opinion on generative action prediction
	Slide 68: Aside: My opinion on generative action prediction
	Slide 69: Behavioral Cloning: Agenda

