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Behavioral Cloning: Agenda 

• Theoretical Foundations

• Tools for Data Collection

• Algorithms

• Leveraging foundation models

• Challenges



Behavioral Cloning: Algorithms

• General optimization problem

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• Instantiation example:

𝜃∗ =  argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

∥ 𝑎𝑖 −𝑁𝑁𝜃 𝑠𝑖 ∥2

• we assume that 𝜋𝜃  (the conditional of actions with respect to states) is a 
gaussian with fixed variance and the prediction of a neural network (𝑁𝑁𝜃) 
conditioned on the state as mean.



Behavioral Cloning: Algorithms

• General optimization problem

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• Things we can decide:
• How to collect the data?

• How to represent the input?

• How to represent the actions?

• How to model the training process?



Data Collection Algorithm: DAGGER

• What we can optimize (𝜌𝜋∗ is the trajectory distribution of the expert):

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• What we should to optimize (𝜌𝜋𝜃
 is the trajectory distribution of the 

student):

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋𝜃

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)



Data Collection Algorithm: DAGGER

• Very simple idea: let the student control the robot, and collect 
demonstrations from the states that the student observed, not from 
the states that the expert observes.

Demonstration 
Trajectory

Student’s 
Trajectory



Data Collection Algorithm: DAGGER

• Very simple idea: let the student control the robot, and collect 
demonstrations from the states that the student observed, not from 
the states that the expert observes.

• This process is called dataset aggregation (Dagger). Improved 
theoretical bound on performance (linear in the episode length).

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, 2010Adapted from S. Levine



Data Collection Algorithm: DAGGER

• What’s the problem with DAGGER?

• You need to ask a human to recollect labeled data after each training 
step!

• Often, this is not how you run it. You complete a set of full training 
sessions and then collect corrective behaviors as needed (people call 
this “batch” dagger).

• Done in practically all BC papers today (either consciously or 
unconsciously)



Behavioral Cloning: Algorithms

• General optimization problem

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• Things we can decide:
• How to collect the data?

• How to represent the input?

• How to represent the actions?

• How to model the training process?



Input Representations

• Remark: We never process “raw” data. There is always some 
processing of sensory data before it is fed to a decision module.

Explicit 
Representations

Minimal 
Representations

Task-agnostic / Faster

Ease of training/generalization

RGB array Image Features
(e.g., CLIP features)

Objects pose, 
robot state



Minimal Input Representations

• Advantages:
• General and simple (often a ResNet-18 or VIT-Small)

• Trained specifically for the task(s) of interest

• Disadvantages:
• Large sample complexity

• Requires a high-capacity (and potentially high-latency) NN

Fancy NN 𝑎𝑡



Intermediate Representations

• Popular Encoders:
• (Dense image features): CLIP, SigLIP, Dyno, … 
• (Sparse image features): SIFT, SURF, …
• People often use the pre-trained image encoders even for non-visual data 

(e.g., tactile).
• (V)AE trained on unlabeled robot data. 
• Depth/Optical Flow, etc.

(Pre-trained) Encoder 𝑧𝑡 Fancy NN 𝑎𝑡



Intermediate Representations: An Example

Real-World Robot Learning with Masked Visual Pre-training, 2022



Intermediate Representations

(Pre-trained) Encoder 𝑧𝑡 Fancy NN 𝑎𝑡

• Advantages:
• Simple and effective
• Inherits robustness from pre-training (e.g., illumination invariance)
• Most popular alternative for VLA-style networks

• Disadvantages:
• Pre-trained encoders might not capture the features you need for the task
• Still large sample complexity



Explicit Representations 

Sensing Module Fancy NN 𝑎𝑡

Obj. Pose,
Robot pose, 
obstacles,
etc.



Explicit Representations 

Reconstructing Hand-Held Objects in 3D; J. Wu, G. Pavlakos, G. Gkioxari, J.Malik. Arxiv 2024. 



Explicit Representations

• Advantages:
• Sample efficient if well designed

• Robust to input variations (if the sensing module is good enough)

• Interpretable (if that’s important for your task)

• Disadvantages:
• Often quite specific for the task. Multi-task explicit representations are hard 

to design.

• Highly reliant on the (separately trained) sensing module. 
• Latency

• Compute

• Failure cases



Recap: Input Representations

• Minimal (e.g., RGB Array)

• Intermediate (e.g., a pre-trained vision encoder like CLIP)

• Explicit (e.g., estimated object pose)



Behavioral Cloning: Algorithms

• General optimization problem

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• Things we can decide:
• How to collect the data?

• How to represent the input?

• How to represent the actions?

• How to model the training process?



Action Representations

• Remark: We (almost) never output direct motor torques. There is often some 
layer of low-level controllers after a policy. The more high-level, the more 
complex the controllers need to be.

High-Level actionsLow-level actions

Task-agnostic / Faster

Ease of training/generalization

Joint Positions,
Body Accelerations

Body Trajectory
Skills 

(e.g., pick, place, etc.)



Low-Level Action Prediction

• Generally, joint position (e.g., for manipulators) or body accelerations 
(e.g., for drones)

• A bit more complicated than it looks. The cascade of PID controllers 
needs to be well-designed to function effectively.

• Often, we use more fancy controllers than a PID: 
• Adaptive controllers (if some parameters are unknown or hard to model)
• Impedance controllers (very common in manipulation)

Cascade of PIDs 𝜏𝑡𝑎𝑡



Low-Level Action Prediction

• Advantages:
• General and simple

• Disadvantages:
• Large sample complexity
• Policy needs to be very fast to control at such low-level

• Currently, this works well for RL, but it’s not so popular in BC.

Cascade of PIDs 𝜏𝑡𝑎𝑡



Mid-Level Action Prediction

• There is a lot of leeway in the definition of these actions:
• Joint position sequences 

• Position/Velocity sequences of end effectors

• The controllers’ complexity increases… 

Controllers Cascade 𝜏𝑡:𝑡+𝐾



Mid-Level Action Prediction: An example

• All blocks must be properly designed/tuned.

• Side note: these are the same blocks that are in place during data 
collection (see last lecture’s slides). Therefore, the operator can potentially 
account for some limitations of the controllers. 

Inverse 
Kinematics

(Admittance) 
Controller

PID Controller

10Hz 20Hz 50-100Hz >500Hz



Mid-Level Action Prediction

• Advantages:
• Lowers the frequency at which the policy needs to operate.
• Simplifies learning.
• Easier to add constraints to the policy (e.g., a safety filter).

• Disadvantages:
• Latency/Compute of the controllers.
• Potentially bottlenecked by what the controllers can do. 

• This is the most popular approach for BC right now.

Controllers Cascade 𝜏𝑡:𝑡+𝐾



High-Level Action Prediction

• The policy outputs a desired behavior (e.g., pick an apple), and the 
right skill is selected from a library to execute the desired behavior.

• The policy effectively works as a planner/state machine. 

• The skill library comprises a set of lower-level policies, some of which 
could be trained using BC/RL or other optimization methods.

Skill Library 𝜏𝑡:𝑡+𝐾
Desired 
Behavior



High-Level Action Prediction: An Example

PaLM-E: An Embodied Multimodal Language Model, 2023



High-Level Action Prediction

• Advantages:
• Policy can operate at a low frequency.

• Disadvantages:
• If you don’t have a skill for something, the policy can’t do anything.

• Most people don’t call training these policies as BC. Often you need no 
training at all: you can use VLMs zero-shot for planning.

Skill Library 𝜏𝑡:𝑡+𝐾
Desired 
Behavior



Recap: Action Representations

• Low-Level Control (e.g., body acceleration)

• Mid-Level Control (e.g., end-effector position sequence)

• High-Level Control (e.g., skills)



Behavioral Cloning: Algorithms

• General optimization problem

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• Things we can decide:
• How to collect the data?

• How to represent the input?

• How to represent the actions?

• How to model the training process?



The Training Process

• 𝜃∗ = argmax𝜃 σ𝑎𝑖,𝑠𝑖~𝜌𝜋∗ log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

• 𝜃∗ =  argmax𝜃 σ𝑎𝑖,𝑠𝑖~𝜌𝜋∗ ∥ 𝑎𝑖 −𝑁𝑁𝜃 𝑠𝑖 ∥2 for a particular action 
distribution choice. This makes it a traditional regression problem.

• Why isn’t this always enough?

• Multi-modality in the demonstrations

• Multi-modality in the optimal policy



The Training Process

Possible solutions to the problem:

• Discretization of the action space

• Learn a more expressive distribution
• Mixture of Gaussians

• Diffusion

• Latent actions



Action Space Discretization

• Simple idea: divide actions into bins.

• You don’t predict anymore a continuous
value, but a probability over bins.

• This automatically accounts for
 multi-modality.

• Common approach:
• Uniform discretization with 256 bins over each coordinate (using the 1st and 99th 

quantile of the actions in the training data as the minumum and maximum values, 
respectively)



Action Space Discretization

• Can I predict action dimensions independently? 
• Assume I do, that’s how the distribution will look:

𝜋 𝑎𝑡 𝑠𝑡 = 𝜋 𝑎𝑡,0 𝑠𝑡 𝜋 𝑎𝑡,1 𝑠𝑡 𝜋 𝑎𝑡,2 𝑠𝑡 …

• This implicitly assumes that action dimensions are independent given the state. 
Not really a good assumption.

• Let’s try to remove the independence assumption:
𝜋 𝑎𝑡 𝑠𝑡 = 𝜋 𝑎𝑡,0 𝑠𝑡 𝜋 𝑎𝑡,1 𝑠𝑡 , 𝑎𝑡,1 𝜋 𝑎𝑡,3 𝑠𝑡 , 𝑎𝑡,2, 𝑎𝑡,1 …

• Does this formulation remind you of something?



Action Space Discretization: Autoregressive Prediction

Image adapted from S. Levine



Action Space Discretization: An Example

• The model outputs a set of strings (tokens), each of which is mapped 
to an action (delta translation and rotation of end effector).

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control



Action Space Discretization: FAST

• Apply DCT to convert actions to the frequency domain. Then, quantize the DCT 
coefficients and use byte-pair encoding (BPE) to compress the flattened sequence 
of per-dimension DCT coefficients into the final action token sequence.

FAST: Efficient Action Tokenization for Vision-Language-Action Models, 2025



Action Space Discretization: FAST

• The way you discretize actions has a 
large impact on performance and 
training speed!



Action Space Discretization

• Advantages:

• Simple

• Effective

• Disadvantages:

• Resolution of action space

• You lose the inductive bias of continuous values (0.1 is closer to 0.2 
than 0.5, but has equal “distance” to them in discrete space).



The Training Process

Possible solutions to the problem:

• Discretization of the action space

• Learn a more expressive distribution
• Mixture of Gaussians

• Diffusion

• Latent actions



Expressive Continuous Action Distributions

• Predict a (parametric) continuous distribution directly. 
• Example: parameters of a mixture of gaussians (e.g, Implicit Behavioral 

Cloning, 2021)

• Directly optimize the BC problem:

𝜃∗ = argmax𝜃 ෍

𝑎𝑖,𝑠𝑖~𝜌𝜋∗

log 𝜋𝜃(𝑎𝑖|𝑠𝑖)

Fancy NN

𝑎𝑡

𝑝(𝑎𝑡)



Expressive Continuous Action Distributions

• Do we need the whole distribution at test time?

• Generally, no (exception: we want to be aware of uncertainty)

• What we need is a sample from that distribution.

• Does this problem remind you of something?

Fancy NN

𝑎𝑡

𝑝(𝑎𝑡)



Generative Models

• High-level Objective: Transform a “simple” distribution, e.g., a unit 
Gaussian, into a complex distribution.  

• Why is it possible? The Manifold Hypothesis

Image from “Foundations of Computer Vision”



Generative Models

• Two types of generative modeling:
• Direct: Predict the whole distribution (e.g., mixture of gaussians, as before)

• Indirect: Transform a sample from the starting distribution into a sample from 
the goal distribution (recently popularized by genAI). 

• Like genAI, indirect methods are the most popular in robot learning.

Image from “Foundations of Computer Vision”



Generative Models: Variational Auto-Encoders

• Train an encoder to map a point into the mean and std of a 
distribution, sample from it, and decode the output.

Image from “Foundations of Computer Vision”



Generative Models: Variational Auto-Encoders

• Trained with reconstruction loss.

• At test time, you can throw the encoder and sample from the decoder.

Image from “Foundations of Computer Vision”



Generative Models: Conditional Variational Auto-Encoders

• Providing additional information 
to the generator is a process 
called “conditioning”.

• This enables us to model a 
conditional distribution.

• What type of conditioning is 
very common in genAI?

Image from “Foundations of Computer Vision”



Generative Models: Conditional Variational Auto-Encoders

• In robotics, where we are trying 
to model 𝜋𝜃 𝑎𝑖 𝑠𝑖 , we should 
naturally condition on the 
“state” (e.g., sensor 
observations)

• Additional conditioning, e.g. 
text, are common in multi-task 
settings.



Conditional Variational AE in Robotics: ACT

• Action-Chunking Transformer (ACT).

• Training Time: Action sequence reconstruction loss + 𝑧 regularization.

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023



Conditional Variational AE in Robotics: ACT

• Action-Chunking Transformer (ACT).

• Test Time: Put z to zero (mean of distribution)

0

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023



Conditional Variational AE in Robotics: ACT

• Interesting find: The conditional VAE is particularly helpful with 
human data, but unimportant with scripted data.

Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware, 2023



Generative Models: Diffusion

Image from “Foundations of Computer Vision”



Connection between Diffusion and VAE

Let’s make this a fixed function: adding Gaussian noise with
“randomized” standard deviations 

Let’s do multiple passes of the decoder



Connection between Diffusion and VAE

A diffusion model is equivalent to a hierarchical VAE with a noising 
encoder!

Understanding Diffusion Models: A Unified Perspective, 2022



Conditional Diffusion

• Like conditional VAEs, additional inputs are given to the decoder to 
model conditional distributions.

Image from “Foundations of Computer Vision”



Conditional Diffusion in Robotics: Diffusion Policies

• The denoiser 𝜖𝜃  is conditioned on the robot end effector pose and 
image sequence 𝑂𝑡, and the previous step denoised output 𝐴𝑡 .

• Run the denoiser 𝜖𝜃  for K steps.

Diffusion Policies, 2023



Diffusion Policies: Capturing Multi-Modality



Diffusion or C-VAE for BC in Robotics?

• The advantage of C-VAE is that it is simpler to implement and requires 
less computation at test time.

• The advantage of diffusion lies in its widespread adoption in GenAI, 
allowing us to leverage the latest advancements (e.g., classifier-free 
guidance, shortcut models, etc.). However, it requires more 
computation at test time.

• Diffusion is much more popular today in robot learning papers. It 
appears to be empirically superior to C-VAE.

• Probably not so much of a difference in the low-data regime at which 
we generally work in academia.



A Common Ingredient in Diffusion Policies and ACT

• Multi-step action prediction (i.e., a chunk) is key to performance!

ACT Diffusion Policies



A Common Ingredient in Diffusion Policies and ACT

• Key advantage of chunking: decreasing the “effective” network’s 
latency while increasing smoothness.

Inference Starts Inference Ends

Model
Latency Temporal smoothing:

Average overlapping predictions



A Common Ingredient in Diffusion Policies and ACT

• Key advantage of chunking: decreasing the “effective” network’s 
latency while increasing smoothness.

• However, you must be careful!

Real-Time Execution of Action Chunking Flow Policies, 2025



A Common Ingredient in Diffusion Policies and ACT

• Key advantage of chunking: decreasing the “effective” network’s 
latency while increasing smoothness.

• However, you must be careful!

• This is a significant advantage compared to Autoregressive policies, 
which must wait for the prediction of one action to be completed 
before starting the next one.



A Common Ingredient in Diffusion Policies and ACT 

Why does performance 
decrease for longer 
prediction horizons?



I have not discussed many important details…

• Flow-matching instead of diffusion?

• How to cope with potentially bad demonstrations (e.g., the operator stops 
to see how to proceed)?

• What architecture to use for prediction (transformer, resnet, …) and how to 
parametrize the conditioning process?

• How to estimate inference delays in real time?

• How to parametrize actions (joint position, end-effector position, etc.)?



How a well-designed BC algorithm looks like

Real-Time Execution of Action Chunking Flow Policies, 2025

• A lot of complexity is often 
overlooked in conversations 
about BC algorithms.

•  Like in RL methods, 
effective system engineering 
is crucial to achieving good 
performance.



Recap: The Training Process of a BC Policy

We have seen three main types of training processes for BC policies:

• Explicit Action Prediction:
• Directly predict an action given an observation. Either continuous or 

categorical.

• Direct Density Prediction (Implicit BC):
• Predict a full distribution over actions, e.g., a mixture of Gaussians.

• Indirect density Prediction (Diffusion, C-VAE):
• Predict a sample from the target (conditional) distribution.

• The latter is right now the most popular in robot learning papers.



Aside: My opinion on generative action prediction

• I am hesitant to believe this story about the multi-modality of the 
conditional action distribution being the reason why we need 
generative models.

• What’s the probability of being in a purely multi-modal state? Having 
a history of observations potentially decreases this probability…



Aside: My opinion on generative action prediction

• I am hesitant to believe this story about the multi-modality of the 
conditional action distribution being the reason why we need 
generative models.

• What’s the probability of being in a purely multi-modal state? Having 
a history of observations potentially decreases this probability…

• I believe that the real reason why generative models are so successful 
in robot learning is that collecting data is challenging, and particularly 
at scale, humans make numerous mistakes. 

• Generative models are better able to “absorb” these mistakes than 
explicit action prediction methods.



Behavioral Cloning: Agenda 

• Theoretical Foundations

• Tools for Data Collection

• Algorithms

• Leveraging foundation models

• Challenges
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