Policy Gradients and World Models

ESE 6510
Antonio Loquercio

Edouard Manet,
A Bar at the Folies-Bergere, 1882

Policy Gradients in a Task-Specific World Model

evaluate returns
R; =), r(st a)

Can use these samples
to train a task-specific
world model and train
the policy in it!

0+ 6 + OngE[Zt 'T'(St, at)]

This idea has a long history (Sutton, 1990)

Dyna, an Integrated Architecture
for Learning, Planning, and Reacting

Richard S. Sutton
GTE Laboratories Incorporated

Waltham, MA 02254

suttonQ@gte.com

Abstract

Dyna is an Al architecture that integrates learning,
planning, and reactive execution. Learning meth-
ods are used in Dyna both for compiling planning
results and for updating a model of the effects of
the agent’s actions on the world. Planning is incre-
mental and can use the probabilistic and ofttimes
incorrect world models generated by learning pro-
cesses. Execution is fully reactive in the sense that
no planning intervenes between perception and ac-
tion. Dyna relies on machine learning methods for
learning from examples—these are among the ba-
sic building blocks making up the architecture—yet
is not tied to any particular method. This paper
briefly introduces Dyna and discusses its strengths
and weaknesses with respect to other architectures.

1 Introduction to Dyna

The Dyna architecture attempts to integrate

Trial-and-error learning of an optimal reactive policy, a
mapping from situations to actions;

Learning of domain knowledge in the form of an action
model, a black box that takes as input a situation and
action and outputs a prediction of the immediate next
situation;

Planning: finding the optimal reactive policy given do-
main knowledge (the action model);

Reactive execution: No planning intervenes between
perceiving a situation and responding to it.

Situation/

State Action

Figure 1: The Problem Formulation Used in Dyna. The
agent’s object is to maximize the total reward it receives over
time.

REPEAT FOREVER:

1.

Observe the world’s state and reactively choose an
action based on it;

Observe resultant reward and new state;

Apply reinforcement learning to this experience;

Update action model based on this experience;

Repeat K times:

5.1
5.2

5.3

Choose a hypothetical world state and action;
Predict resultant reward and new state using action
model;

Apply reinforcement learning to this hypothetical
experience.

Figure 2: A Generic Dyna Algorithm.

The main idea of Dyna is the old, commonsense idea that
planning is ‘trying things in your head,” using an internal
model of the world (Craik, 1943; Dennett, 1978; Sutton &

PPO updates inside a world model

=

=

==

E = Interaction

- =

EE

= Policy Observations
)

2y

5 £ Self-Supervised*

;!

= Observations World Model

2
c=
=3
w5
£z
$HE
- World Model Policy

Model-based reinforcement learning for Atari, Kaiser et al., 2020

Simulated Policy Learning (SimPLe)

Algorithm 1: Pseudocode for SimPLe L[N\ S :
v v . 2 — 2 training inferencel 5 | L d: dense conv
Initialize policy 7 53 e g (@ eueree] B e |
Initialize model parameters 0 of env’ > N AN £ | Lgeconv | recument] [attendon] |
- . p _> = -] 8x8 ‘J‘> g :> a discret II;atent E ______________
Initialize empty set D Next Frame o !
[o----omomoooooes mmmmmmmmmmoomooooooos ': --- > Predlcted
while not done do B S — U N Frame
. 4 Input Frames . skip >
> collect observations from real env. . connegtions N
D e Lo N
D + D UCOLLECT(env, m) %, | e _
> update model USiIlg collected data. T;g S axa] axa [axa] axa] axa [axa Pl axa P s P aa P v 2 ana] e 2 S gn
& -E ; rezeall] | B B B B B
0 <+ TRAIN_SUPERVISED(env’, D) v e ﬂ
1 1 7x5x2 =3 - Predicted
> update policy using world model. e Fpp b B T gl o Reward
7 < TRAIN_RL(m, ent’) 8 | multiplication "z ioseeoes
— 3 S T oiciocs

end while 105x80x64

* Model is stochastic (VAE style), avoids blurring between modes of the distribution

* |t uses a discrete latent (similar to VQ-VAE), which makes optimization harder but
empirically gives better predictions.

Do we really need a model in pixel space?

Model-based reinforcement learning for Atari, Kaiser et al., 2020

The Dreamer Saga (v1,v2,v3)

Learn a model in a latent space: No pixel-level predictions during planning.

(a) World Model Learning (b) Actor Critic Learning

Mastering Diverse Domains through World Models, Hafner et al., 2024

The Dreamer Saga (v1,v2,v3): Amazing Results!

a Atari ProcGen DMLab Minecraft
57 tasks, 200M steps 16 tasks, 50M steps 30 tasks, 100M steps 1 task, 100M steps b . .
900+ . 70- . 70- . 9- . Minecraft Diamond
600{ o © e 501 3 e 501 4+ < |2 6 z < 2 121 o
=il © 304 ~ 2 © 30- el o = G
30019 5 5 J S C e © IR 5 2 E
On.n:Z 101 £ a [= 10{ & o= =° [a On.ccg 3-
-
2
Ataril00k Proprio Control Visual Control BSuite K
26 tasks, 400K steps 18 tasks, 500K steps 20 tasks, 1M steps 23 tasks 41
1301 - 900 - 9001 - 707 Z — Max
- e J = J Q 50+ Q Mean
90 = 6001 . o k2 6001 | o el © 01 , | .
5010 = n By 300d0 & £ K 300d0 € o B 3010 2 o l5 100K 1M 10M 100M
Q_EE Q_ﬁ'z o D = B _Q_OQ
104.80 x [a olem 0 o8 olee © O[S 101 O o [& Env steps
Tuned experts B Unified configuration

Mastering Diverse Domains through World Models, Hafner et al., 2024

The Dreamer Saga (v1,v2,v3): Many moving parts

* Need several tricks to avoid catastrophic drifting of the model

Sequence model: he = fo(hi1, 2t—1,0¢—1)
RSSM Encoder: 2 ~ o2t | e, xt)

Dynamics predictor: 2t ~ py(2e | he)

Reward predictor: Tt ~ DTt | e, 2¢)

Continue predictor: Ct ~ Dp(Ct | hey 2t)

Decoder: Ty ~ pg(Zy | he, 2t)

Mastering Diverse Domains through World Models, Hafner et al., 2024

The Dreamer Saga (v1,v2,v3): Model Drifts

e Can only forward propagate for a limited number of steps (T=16)

* Policy gradients suffer from limited rollout length, but learning a value function
can help.

Context Input Open Loop Prediction

True

True Model

Model

Mastering Diverse Domains through World Models, Hafner et al., 2024

The Dreamer Saga (v1,v2,v3)

* Works well for sparse reward problems with a discrete action space, especially
when the state space is very large (images).

* However, it struggles with continuous action spaces. To solve the problem,
Dreamer vl and Dreamer v2 exploit the continuity and differentiability of the
model and do direct backpropagations of rewards with respect to actions.

. H-1 A A A
L@) =By, p, | T (—pInpy(a | 2)se(V7 — ve(2))| ~(1 - o)V
reinforce dynamics
backprop

—1) H[at|5ft],)]

entropy regularizer

* Since we have a differentiable model, can’t we do anything better than policy
gradients?

Mastering Diverse Domains through World Models, Hafner et al., 2024

Planning in a latent world model

e Initially proposed in Dyna (Sutton, 1990). More recently, popularized
by PlaNet (Hafner et al, 2018).

* Uses CEM to plan inside the latent model (MPC-Style)

* Works okayish (CEM is compute-intensive at test-time and has
vanishing exploration problems)

Learning Latent Dynamics for Planning from Pixels

Danijar Hafner ' ° Timothy Lillicrap ' lan Fischer * Ruben Villegas '*
David Ha' Honglak Lee' James Davidson '

Abstract enough for planning has been a long-standing challenge.
Key difficulties include model inaccuracies, accumulating
errors of multi-step predictions, failure to capture multiple
possible futures, and overconfident predictions outside of

the trsinine digiribotion

Planning has been very successful for control
tasks with known environment dynamics. To
leverage planning in unknown environments,
sl a L] & i i Ll -

Planning in a latent world model: TD-MPC (v1,v2) Saga

 Run MPC (more specifically, MPPI) inside the task-specific world
model, using a prediction horizon H.

* Terminal cost approximated by a Q function. Trained together with
the model from TD-targets.

H
pu*,o* = arg max E YHQ(zeym, a4 m
(}J,,J) (at;at—}—l ----- at—}—H)NN(“aJQ)

Terminal cost

Stage cost

* Many tricks are required to make this work (model regularization,
ensemble Q functions with EMA, warm-start with policy prior).

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024

Planning in a latent world model: TD-MPC (v1,v2) Saga

Dreamer’s Model TD-MPC’s Model

Do you notice any difference?

Planning in a latent world model: TD-MPC (v1,v2) Saga

* A neat finding: the model does not a, 1§ & 2§ a 4§
need to decode future pixel-level
observations. Fewer moving parts. \ %
Z, j Z, Z3
* It makes the optimization easier, e e e

increasing the focus of the optimizer
towards a useful world model rather
than an accurate world model.

Figure 3. The TD-MPC2 architecture.
Observations s are encoded into their

e Unclear if that’s an advantage for new (normalized) latent representation z. The
K icularl | model then recurrently predicts actions a,
tasks (partlcu arly at sca e)- rewards 7, and terminal values ¢, without

decoding future observations.

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024

Planning in a latent world model: TD-MPC (v1,v2) Saga

Much better than Dreamer and other baselines in continuous control problems!

Multi-task Single-task
DMControl & Meta—World DMControl Meta—World ManiSkill2
80 tasks 100 39 tasks log. >0 tasks 100- 5 tasks
801 317M
48M x _—
P amm— o~ o~ o
J) 19V (@) O @)
o 601 9 50+ = S S
(@) 5M I []
s w : : 2
k5 20 emme TD-MPC2 25-
% e TD-MPC Locomotion MyoSuite Pick YCB
c 7 tasks 10 tasks 1 task
c 100 -
(@) 20_ 75‘ 75'
=) "4 m ™M
% ""\ o 50 b ~ 50 e o~
> 4 @)) O O O ¥
o € o c a [
L ! ! ! = 251y 8 = 2514, 8 = B
1M 10M 100M 1B A I A I £ o B
Model parameters = L = L =

D_

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024

Fresh off the market: Dreamer v4

[cs.AI] 29 Sep 2025

Google DeepMind

Training Agents Inside of Scalable World Models

Danijar Hafner* Wilson Yan* Timothy Lillicrap

World models learn general knowledge from videos and simulate experience for training be-
haviors in imagination, offering a path towards intelligent agents. However, previous world
models have been unable to accurately predict object interactions in complex environments.
We introduce Dreamer 4, a scalable agent that learns to solve control tasks by reinforcement
learning inside of a fast and accurate world model. In the complex video game Minecraft,
the world model accurately predicts object interactions and game mechanics, outperforming
previous world models by a large margin. The world model achieves real-time interactive
inference on a single GPU through a shortcut forcing objective and an efficient transformer
architecture. Moreover, the world model learns general action conditioning from only a small
amount of data, allowing it to extract the majority of its knowledge from diverse unlabeled
videos. We propose the challenge of obtaining diamonds in Minecraft from only offline data,
aligning with practical applications such as robotics where learning from environment inter-
action can be unsafe and slow. This task requires choosing sequences of over 20,000 mouse
and keyboard actions from raw pixels. By learning behaviors in imagination, Dreamer 4 is
the first agent to obtain diamonds in Minecraft purely from offline data, without environment
interaction. Our work provides a scalable recipe for imagination training, marking a step
towards intelligent agents.

Dreamer v4

* No interaction with the environment whatsoever

* Instead, it leverages a large dataset of offline demonstrations (videos
+ actions + rewards).

¢ General idea: Algorithm 1 Dreamer 4

Phase 1: World Model Pretraining

e Train tokenizer on videos using (5).

e Train world model on tokenized videos
and optionally actions using (7).

Phase 2: Agent Finetuning

¢ Finetune world model with task inputs
for policy and reward heads using (7)
and (9).

Phase 3: Imagination Training

e Optimize policy head using (11) and
value head using (10) on trajectories
generated by the world model and the
policy head.

Dreamer v4

* Very fancy video and dynamics prediction model

Block Causal Decoder

Block Causal Encoder

3

(a) Causal Tokenizer (b) Interactive Dynamics

Dreamer v4

* Video model is a shortcut flow-matching model (much faster at
inference time than traditional diffusion models).

* Trained with interleaved actions and observations. Technically, you
don’t need actions for every sequence.

* Learn a policy prior and reward model from the representations of
the video model.

* Finetune agent only in the world model using PMPO (only sign of
advantage used in the update):

N
L(0) = 1 _T Z Inmg(a; | si) — - Z 11’191'9(&1' | si) + %ZKL[?TG({II' | si) || -""rpriur]

- +
|'D i€eD- |D |iE.‘D+ i=1

Summary

* Doing optimization inside a task-specific world model reduces the
number of samples you need to collect by running the current policy
in the environment.

* Effectively squeezing more out of each sample.

* When is this useful?
* Slow/Dangerous to run the policy in the environment

* Rewards are sparse (Why does direct policy gradient struggle?).

 If the sum of rewards is often zero, the estimated values will be zero, and updates will be
noisy. If there is a lucky rollout with a non-zero reward, direct policy learning throws it
away immediately. Model-based learning can use it better.

However...

100 Lift Cube | Pick Cube Pick YCB Stack Cube Turn Faucet

50 .

0

0 IM 2M 3M 4M 0 1M 2M 3M 4M
— TD-MPC2

0 1M 2M 3M 4M O 1M 2M 3M 4M 0
SAC - DreamerV3 —

4M 8M

Highest number of samples!

* If you can wait long enough (billions and not millions of samples) and
you are careful about decaying exploration, PPO-style approaches
tend to do as good or better than model-based approaches.

However...

* If | am anyway training in a simulator, | can play other tricks to make
PPO-style approaches faster.

* Can you give some examples?

* Dense reward shaping (foot contact, reaching rewards, etc.). Especially useful
if | know more or less how the task should be solved.

* Smart reset strategies/environment design:

* |nitialize the agent close to places where it can easily get rewards (e.g., close to gates in
drone racing)

» Stop the rollout if the agent is in a state where recovery is difficult (e.g., crashed)

Walit...

» With task-specific models, | can potentially learn w/o a simulator!

DayDreamer: World Models for
Physical Robot Learning

Philipp Wu* Alejandro Escontrela* Danijar Hafner*
Ken Goldberg Pieter Abbeel

University of California, Berkeley

*Equal contribution

(a) A1 Quadruped Walking (b) URS Visual Pick Place (c) XArm Visual Pick Place (d) Sphero Navigation

However...

* It does not seem to work well when observation is high-dimensional.

* It struggles beyond simple tasks where the robot can be easily reset.

However...

* It does not seem to work well when observation is high-dimensional.
* It struggles beyond simple tasks where the robot can be easily reset.

 We seem to live in a world where good simulation engineering and
reward shaping work much better than learning the model from real-
world robot interactions.

* Unclear whether that’s general or an artifact of the family of tasks we are
currently very successful at (quadcopter flight, locomotion, pick-and-place).

* Unclear whether powerful video models will change this (only cover one
modality, potentially slower than real-time)

* We are still far from a solid algorithmic solution to this problem! (One
possible solution might be to have robots that don’t break easily and can be
run for long)

	Slide 1: Policy Gradients and World Models
	Slide 2: Policy Gradients in a Task-Specific World Model
	Slide 3: This idea has a long history (Sutton, 1990)
	Slide 4: PPO updates inside a world model
	Slide 5: Simulated Policy Learning (SimPLe)
	Slide 6: The Dreamer Saga (v1,v2,v3)
	Slide 7: The Dreamer Saga (v1,v2,v3): Amazing Results!
	Slide 8: The Dreamer Saga (v1,v2,v3): Many moving parts
	Slide 9: The Dreamer Saga (v1,v2,v3): Model Drifts
	Slide 10: The Dreamer Saga (v1,v2,v3)
	Slide 11: Planning in a latent world model
	Slide 12: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 13: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 14: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 15: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 16: Fresh off the market: Dreamer v4
	Slide 17: Dreamer v4
	Slide 18: Dreamer v4
	Slide 19: Dreamer v4
	Slide 20: Summary
	Slide 21: However…
	Slide 22: However…
	Slide 23: Wait...
	Slide 24: However…
	Slide 25: However…

