
Policy Gradients and World Models

ESE 6510
Antonio Loquercio

Edouard Manet,

A Bar at the Folies-Bergere, 1882



Policy Gradients in a Task-Specific World Model

Improve the 
policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Can use these samples 
to train a task-specific 
world model and train 
the policy in it!



This idea has a long history (Sutton, 1990)



PPO updates inside a world model

Model-based reinforcement learning for Atari, Kaiser et al., 2020 



Simulated Policy Learning (SimPLe)

Model-based reinforcement learning for Atari, Kaiser et al., 2020 

• Model is stochastic (VAE style), avoids blurring between modes of the distribution

• It uses a discrete latent (similar to VQ-VAE), which makes optimization harder but 
empirically gives better predictions.

• Do we really need a model in pixel space?



The Dreamer Saga (v1,v2,v3)

Learn a model in a latent space: No pixel-level predictions during planning. 

Mastering Diverse Domains through World Models, Hafner et al., 2024



The Dreamer Saga (v1,v2,v3): Amazing Results!

Mastering Diverse Domains through World Models, Hafner et al., 2024



The Dreamer Saga (v1,v2,v3): Many moving parts

• Need several tricks to avoid catastrophic drifting of the model

Mastering Diverse Domains through World Models, Hafner et al., 2024



The Dreamer Saga (v1,v2,v3): Model Drifts

• Can only forward propagate for a limited number of steps (T=16)

• Policy gradients suffer from limited rollout length, but learning a value function 
can help.

Mastering Diverse Domains through World Models, Hafner et al., 2024



The Dreamer Saga (v1,v2,v3)

• Works well for sparse reward problems with a discrete action space, especially 
when the state space is very large (images).

• However, it struggles with continuous action spaces. To solve the problem, 
Dreamer v1 and Dreamer v2 exploit the continuity and differentiability of the 
model and do direct backpropagations of rewards with respect to actions.

• Since we have a differentiable model, can’t we do anything better than policy 
gradients?

Mastering Diverse Domains through World Models, Hafner et al., 2024



Planning in a latent world model

• Initially proposed in Dyna (Sutton, 1990). More recently, popularized 
by PlaNet (Hafner et al, 2018). 

• Uses CEM to plan inside the latent model (MPC-Style)

• Works okayish (CEM is compute-intensive at test-time and has 
vanishing exploration problems) 



Planning in a latent world model: TD-MPC (v1,v2) Saga

• Run MPC (more specifically, MPPI) inside the task-specific world 
model, using a prediction horizon H.

• Terminal cost approximated by a Q function. Trained together with 
the model from TD-targets.

• Many tricks are required to make this work (model regularization, 
ensemble Q functions with EMA, warm-start with policy prior).

Terminal cost
Stage cost

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024 



Planning in a latent world model: TD-MPC (v1,v2) Saga

Dreamer’s Model TD-MPC’s Model

Do you notice any difference?



Planning in a latent world model: TD-MPC (v1,v2) Saga

• A neat finding: the model does not 
need to decode future pixel-level 
observations. Fewer moving parts.

• It makes the optimization easier, 
increasing the focus of the optimizer 
towards a useful world model rather 
than an accurate world model.

• Unclear if that’s an advantage for new 
tasks (particularly at scale).

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024 



Planning in a latent world model: TD-MPC (v1,v2) Saga

TD-MPC2: Scalable, Robust World Models for Continuous Control, Hansen et al, 2024 

Much better than Dreamer and other baselines in continuous control problems!



Fresh off the market: Dreamer v4



Dreamer v4

• No interaction with the environment whatsoever

• Instead, it leverages a large dataset of offline demonstrations (videos 
+ actions + rewards).

• General idea: 



Dreamer v4

• Very fancy video and dynamics prediction model



Dreamer v4

• Video model is a shortcut flow-matching model (much faster at 
inference time than traditional diffusion models).

• Trained with interleaved actions and observations. Technically, you 
don’t need actions for every sequence.

• Learn a policy prior and reward model from the representations of 
the video model.

• Finetune agent only in the world model using PMPO (only sign of 
advantage used in the update): 



Summary

• Doing optimization inside a task-specific world model reduces the 
number of samples you need to collect by running the current policy 
in the environment.

• Effectively squeezing more out of each sample.

• When is this useful?
• Slow/Dangerous to run the policy in the environment

• Rewards are sparse (Why does direct policy gradient struggle?).
• If the sum of rewards is often zero, the estimated values will be zero, and updates will be 

noisy. If there is a lucky rollout with a non-zero reward, direct policy learning throws it 
away immediately. Model-based learning can use it better. 



However…

• If you can wait long enough (billions and not millions of samples) and 
you are careful about decaying exploration, PPO-style approaches 
tend to do as good or better than model-based approaches.

Highest number of samples!



However…

• If I am anyway training in a simulator, I can play other tricks to make 
PPO-style approaches faster.

• Can you give some examples?

• Dense reward shaping (foot contact, reaching rewards, etc.). Especially useful 
if I know more or less how the task should be solved.

• Smart reset strategies/environment design: 
• Initialize the agent close to places where it can easily get rewards (e.g., close to gates in 

drone racing)

• Stop the rollout if the agent is in a state where recovery is difficult (e.g., crashed)



Wait...

• With task-specific models, I can potentially learn w/o a simulator!



However…

• It does not seem to work well when observation is high-dimensional.

• It struggles beyond simple tasks where the robot can be easily reset.



However…

• It does not seem to work well when observation is high-dimensional.

• It struggles beyond simple tasks where the robot can be easily reset.

• We seem to live in a world where good simulation engineering and 
reward shaping work much better than learning the model from real-
world robot interactions.
• Unclear whether that’s general or an artifact of the family of tasks we are 

currently very successful at (quadcopter flight, locomotion, pick-and-place).

• Unclear whether powerful video models will change this (only cover one 
modality, potentially slower than real-time)

• We are still far from a solid algorithmic solution to this problem! (One 
possible solution might be to have robots that don’t break easily and can be 
run for long)


	Slide 1: Policy Gradients and World Models
	Slide 2: Policy Gradients in a Task-Specific World Model
	Slide 3: This idea has a long history (Sutton, 1990)
	Slide 4: PPO updates inside a world model
	Slide 5: Simulated Policy Learning (SimPLe)
	Slide 6: The Dreamer Saga (v1,v2,v3)
	Slide 7: The Dreamer Saga (v1,v2,v3): Amazing Results!
	Slide 8: The Dreamer Saga (v1,v2,v3): Many moving parts
	Slide 9: The Dreamer Saga (v1,v2,v3): Model Drifts
	Slide 10: The Dreamer Saga (v1,v2,v3)
	Slide 11: Planning in a latent world model
	Slide 12: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 13: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 14: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 15: Planning in a latent world model: TD-MPC (v1,v2) Saga
	Slide 16: Fresh off the market: Dreamer v4
	Slide 17: Dreamer v4
	Slide 18: Dreamer v4
	Slide 19: Dreamer v4
	Slide 20: Summary
	Slide 21: However…
	Slide 22: However…
	Slide 23: Wait...
	Slide 24: However…
	Slide 25: However…

