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Behavioral Cloning: Agenda

* Theoretical Foundations

* Tools for Data Collection

* Algorithms

* Leveraging foundation models

* Challenges



What is a Foundation Model?

“A foundation model is any model that is trained on broad data (generally using self-supervision at scale)
that can be adapted (zero-shot or fine-tuned) to a wide range of downstream tasks.”
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Bommasani, et.al. On the Opportunities and Risks of Foundation Models, 2021



(Recap) What can | use Foundation Models for in Robotics?

* Feature extractors
* Producing goal-conditioned input features from which learning is easy/fast.

e Reward Models

 Data Generation



Foundation Models as Feature Extractors
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Foundation Models as Feature Extractors

* Image Encoder
e Often a combination of Dyno (low-level vision) and SigLIP (high-level vision).
* Apparently works well even for other modalities, e.g., vision and touch.

* Text Encoder
* use pre-trained tokenizers (e.g., T5, Llama, CLIP)

e General Idea:

* Encoders are often heavy, so you don’t finetune them unless strictly
necessary.



Vision-Language Action (VLA) Models

* The anatomy of a VLA
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OpenVLA: No Action Head
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1. With Action Head
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10.5: a Vision-Language-Action Model with Open-World Generalization



1. With Action Head

continuous actions

* How does this work? subtask prediction (oo®@)
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* Z; = noise (shape TxC)

* Denoising Step:
e z,_1 = z; + F(concat(xy, x5, x3,L,y,2.)) [~ T:]
* Fis the forward pass of the transformer
e Can use tricks to make this fast (e.g., KV-caching).

10.5: a Vision-Language-Action Model with Open-World Generalization



W/ Action Head is the most common choice in industry

* Nvidia Groot
* Figure Helix

e Aside: Don’t call it system 1 and system 2, this is wrong.



VLA Training (still evolving, but at high level)

 Phase |

* Pretrain on text, Visual Q&A data and general robot data.
* Either from scratch, or finetuning an existing open source LLM (e.g., gemma).
* Generally done without action head.

 Phase |l

e Add the action head and finetune the policy with robot data
* Often repeated for different tasks



VLA Training Data
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Vision Language Action Model: General Wisdom

* The pre-training step really helps visual generalization.

* Training in different locations for the same task yields similar
performance to training in the test locations.
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Fig. 8: Evaluating performance with different numbers of locations.
Performance over the four test tasks — “dishes in sink™, “items in drawer”,
“laundry basket”, “make bed” — improves with more training environments.
The dashed green line and green bar show a baseline model that includes
the test homes in the training set. Compared to this model, our best model
achieves similar performance, despite not seeing any data from the test homes.

n0.5: a Vision-Language-Action Model with Open-World Generalization



Vision Language Action Model: General Wisdom

* Web-data at pretraining helps, but less than vision-language models.
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Fig. 10: Training recipe ablations, mock homes. We evaluate variants of
our model that exclude different parts of the training mixture on all four test
tasks (10 trials per policy and task). Including cross-embodiment data, both in
diverse environments (ME) and for diverse tasks in laboratory settings (CE) is
important for good performance, with large degradation when either or both
of these data sources are removed. Web data (WD) does not make a significant
difference in these experiments, but we will see in Figures 11 and 13 that it
impacts object generalization and high-level performance.
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Fig. 11: Training recipe ablations, language following. Evaluating language
following with in-distribution and out-of-distribution objects after training on
different numbers of locations. Including web data (WD) is important for out-
of-distribution (OOD) performance in particular. Cross-embodiment (CE) and
diverse environment (ME) data both have a large impact on in-distribution
and out-of-distribution performance.



Vision Language Action Model: General Wisdom

e Often the model does not do what you ask.

 Particularly an issue with small Phase Il datasets.
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Vision Language Action Model: General Wisdom

* Small technical decision matter a lot:
Number of diffusion steps

Data normalization

Data distribution

Grippers

e We'll come back to this in the next class



(Recap) What can | use Foundation Models for in Robotics?

e Reward Models

 Data Generation



Foundation Models as Rewards

* Old idea

* Quite hard in practice
* Reward Shaping?

* Value functions barely
generalize between
policies, generalizing per
task is even harder.

* Look at the value function
loss of your drone racing
project...
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Abstract

Value functions are a core component of rein-
forcement learning systems. The main idea is
to to construct a single function approximator
V (s; 6) that estimates the long-term reward from
any state s, using parameters 6. In this paper
we introduce universal value function approx-
imators (UVFAs) V (s, g;6) that generalise not
just over states s but also over goals g. We de-
velop an efficient technique for supervised learn-
ing of UVFAs, by factoring observed values into
separate embedding vectors for state and goal,
and then learning a mapping from s and g to
these factored embedding vectors. We show how
this technique may be incorporated into a re-
inforcement learning algorithm that updates the
UVFA solely from observed rewards. Finally, we
demonstrate that a UVFA can successfully gener-
alise to previously unseen goals.
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how to evaluate or control a specific aspect of the environ-
ment (e.g. progress toward a waypoint). A collection of
general value functions provides a powerful form of knowl-
edge representation that can be utilised in several ways. For
example, the Horde architecture (Sutton et al., 2011) con-
sists of a discrete set of value functions (‘demons’), all of
which may be learnt simultaneously from a single stream
of experience, by bootstrapping off-policy from successive
value estimates (Modayil et al., 2014). Each value function
may also be used to generate a policy or option, for example
by acting greedily with respect to the values, and terminat-
ing at goal states. Such a collection of options can be used
to provide a temporally abstract action-space for learning
or planning (Sutton et al.,, 1999). Finally, a collection of
value functions can be used as a predictive representation
of state, where the predicted values themselves are used as
a feature vector (Sutton & Tanner, 2005; Schaul & Ring,
2013).

In large problems, the value function is typically repre-
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Foundation Models as Rewards: Formulations

e Dense Reward Prediction

* Direct
e Code Generation (Mainly in simulation)

* Sparse Reward Prediction
* Success / Failure
* Preference

e Value Prediction
e “Time” to finish

e Often the foundation model is finetuned for the task of reward prediction,
but it can do zero-shot with some tricks.



Foundation Models as Zero-Shot Dense Reward Models
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Vision-Language Models are Zero-shot Reward Models for Reinforcement Learning, 2024



Foundation Models as Zero-Shot Dense Reward Models

* Works okaish (cannot learn many tasks)
* Sensitive to prompting

Camera Textures Success
Angle Rate
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Original  Modified /
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& camera angle



Foundation Models as Zero-Shot Sparse Reward Models
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Foundation Models as Zero-Shot Value Models

“fold the black dress”
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Vision-Language Models are In-Context Value Learners, 2025



Finetuning a Model for Value Prediction
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(Recap) What can | use Foundation Models for in Robotics?

 Data Generation



Foundation Models for Data Augmentation

Scaling Robot Learning with Semantically Imagined Experience, 2023



Foundation Models for Data Augmentation
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Semantically controllable augmentations for generalizable robot learning, 2025



Foundation Models for Data Augmentation

* Mainly focuses on visual augmentation. But there are instances of
action augmentation (e.g., moving objects and adapting the
trajectory).

* Nice idea, but hard to do in practice:
* Which objects are important for the task? Which one can be randomized?

* How to make sure the action does not change? (think about lifting a full
bottle vs an empty bottle)

* Not standard in SOTA robot learning pipelines (that | am aware of)



Behavioral Cloning: Agenda

* Theoretical Foundations

* Tools for Data Collection

* Algorithms

* Leveraging foundation models

* Challenges
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