
Introduction to
Reinforcement Learning

ESE 6510
Antonio Loquercio

Thorndike, 1898
Animal Intelligence

Some History

Optimal Control Trial and Error Learning

Edward Thorndike

• Interested in whether animals could learn
tasks through imitation or observation

• Tested this by creating puzzles that
animals had to solve to get food.

• Observed that different animals have
similar learning curves (S-shaped)

• He called this “The Law of Effect”

The Law of Effect and Connectionism

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the situation,
so that, when it recurs, they will be more likely to recur; those which are
accompanied or closely followed by discomfort to the animal will, other
things being equal, have their connections with that situation
weakened, so that, when it recurs, they will be less likely to occur. The
greater the satisfaction or discomfort, the greater the strengthening or
weakening of the bond. (Thorndike, 1911, p. 244)

The Law of Effect and Connectionism

He identified two core characteristics of the law of effect:

• Selectional, it involves trying alternatives and selecting among them
by comparing their consequences.

• Associative, the alternatives found by selection are associated with a
particular sensory state.

• What is something that is selectional but not associative? What is
associative but not selectional?

Burrhus Frederic Skinner

Extended the idea by asking three core questions:

• How do behaviors emerge in the first place?
Variation and selection (shaping).

• Once in the organism’s repertoire, how are they
directed and used?
The stimulus-response-reinforcer 3-way contingency

• How can very complex and seemingly novel
behaviors be explained?
Chaining. But it can’t be the whole story…

The Operant Conditioner Chamber (or Skinner Box)

• Expose the animal to carefully
controlled stimuli

• Collect response rates and use them
as a proxy for learning.

• Still, it oversimplifies the role of the
environment on the agent.

• Trivia: Project Pigeon

Towards Engineering RL: Andreae’s Stella (1962)

Stella (1962) Menace (1961)

Going Beyond Supervised Learning

(1973)

(1981)

Temporal Difference Learning

• Driven by the difference between temporally successive estimates of
the same quantity (e.g., probability of winning in tic-tac-toe),
connected to the idea of secondary reinforcement (from Klopf).

• Pioneered by Arthur Samuel in 1954.

• The actor-critic architecture (Sutton, Barto, Anderson, 1981): TD
learning applied for trial-and-error problems (cartpole and games)

• Q-Learning (Watkins, 1989) Temporal-difference and optimal control
threads are brought together.

Let’s Get Technical!

Definitions

• Markov Chain

• Markov Decision Process

• Partially Observed Markov Decision Process

What do these things mean for a robot?

• What is a, p, o, r? What is s?

• s can be extremely large (possibly, infinite-dimensional)

Policies

• We typically use parametrized stochastic policies, which we’ll write as
𝜋𝜃 a | s . Can be a discrete or continuous distribution.

• 𝜃 is a parameter vector that specifies the policy.

• For multi-dimensional output, we rarely model off-diagonal terms,
since the optimal policy of an MDP or POMDP is deterministic.

The goal of reinforcement learning

𝜋st at

Environ-
ment

Policy or Agent

Adapted from S. Levine

The finite horizon case

Adapted from S. Levine

Alternative Formulations

• Conditional Value at Risk (CVaR)

𝜃⋆ = arg max
𝜃

෍

𝑡=1

𝑇

𝐶𝑉𝑎𝑅𝛼𝐸 𝐬𝑡,𝐚𝑡 ∼𝑝𝜃 𝐬𝑡,𝐚𝑡
𝑟 𝐬𝑡 , 𝐚𝑡

• Time-Varying Weight

𝜃⋆ = arg max
𝜃

෍

𝑡=1

𝑇

𝐶𝑡𝐸 𝐬𝑡,𝐚𝑡 ∼𝑝𝜃 𝐬𝑡,𝐚𝑡
𝑟 𝐬𝑡 , 𝐚𝑡

The Core Issue

a
s0 s1

r s1, a = As1

a = 𝜋𝜃 s0

r s1, a = r f(s0, 𝜋𝜃 s0)

𝜕r

𝜕𝜃
=

𝜕r

𝜋𝜃
∗

𝜕𝜋𝜃

𝜕𝜃

𝜕r

𝜕π
=

𝜕r

𝜕f
∗

𝜕f

𝜋
f might not be differentiable

I don’t know f

The general structure of an RL algorithm

Which parts are expensive?

Improve
the policy

Generate
samples
→ run the

policy

Fit a
model,

estimate
the return

Adapted from S. Levine

Example: Learning the Model (Model-Based RL)

Improve the
policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Example: Evolutionary Algorithms

• Treat the whole process of turning parameters into a reward R as a
black box.

• 𝜃 → → σt r(st , at)

• Possible approach: Evolutionary Algorithms (e.g., CEM).

Cross-Entropy Methods

What’s this in CEM?
Improve the

policy

Generate
samples
→ run the

policy

Compute
the return

Can we do better?

Adapted from S. Levine

Q-Function

Value Function

Definitions
often uses Q or
Value functions

Improve
the policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Using Value Function and Q Functions

Idea 1: if we have policy 𝜋, and we know 𝑄𝜋(𝐬, 𝐚), then we can improve 𝜋 :

 set 𝜋′(𝐚 ∣ 𝐬) = 1 if 𝐚 = argmaxa 𝑄𝜋(𝐬, 𝐚)

 this policy is at least as good as 𝜋 (and probably better)!
 and it doesn't matter what 𝜋 is

Idea 2: compute gradient to increase probability of good actions 𝐚 :

 if 𝑄𝜋(𝐬, 𝐚) > 𝑉𝜋(𝐬), then 𝐚 is better than average
 (recall that 𝑉𝜋(𝐬) = 𝐸 𝑄𝜋(𝐬, 𝐚) under 𝜋(𝐚 ∣ 𝐬))
 modify 𝜋(𝐚 ∣ 𝐬) to increase probability of 𝐚 if 𝑄𝜋(𝐬, 𝐚) > 𝑉𝜋(𝐬)

These ideas are very important in RL!

Adapted from S. Levine

Types of RL Algorithms (Optimization type)

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy
 (no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy,
 use it to improve policy

• Model-based RL: estimate the transition model, and then…
• Use it for planning (no explicit policy)

• Use it to improve a policy

• Something else

Adapted from S. Levine

Direct Policy Gradients

Improve the
policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Value-Function Based

Improve the
policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Actor-Critic: Doing Both

Improve the
policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Model-Based RL Algorithms

Just use the model to plan (no policy)
• Trajectory optimization/optimal control (primarily in continuous spaces) –

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

Backpropagate gradients into the policy
• Requires some tricks to make it work

Use the model to learn a value function or a policy
• Dynamic programming
• Generate simulated experience for a model-free learner

A better model does not necessarily imply a better policy!

Adapted from S. Levine

Why so many algorithms?

Different tradeoffs
• Sample efficiency

• Stability & ease of use

Different assumptions
• Stochastic or deterministic?

• Continuous or discrete policy?

• Episodic or infinite horizon?

Different things are easy or hard in different settings
• Easier to represent the policy?

• Easier to represent the model?

Adapted from S. Levine

Types of RL Algorithms (Sample efficiency)

• On-policy algorithms:
• Use data from the current policy to estimate returns.

Every time the policy changes, we need new samples
from that policy.

• Off-policy algorithms:
• Can improve the policy with data from current and

previous policies.

• Offline reinforcement learning:
• Utilize previously collected data, without additional

online data.
• Conceptually similar to imitation learning, it can work

better in the low-data regime.

Improve
the policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Adapted from S. Levine

Types of RL Algorithms (Sample efficiency)

Why not always use the most sample-efficient algorithm available?

off-policy on-policy
more efficient
(fewer samples)

less efficient
(more samples)

Evolutionary or
gradient-free

On-policy
policy gradient
algorithms

actor-critic
style methods

off-policy
Q-function
learning

model-based
deep RL

model-based
shallow RL

direct action
optimization

Adapted from S. Levine

Stability and ease-of-use

• Does it converge?

• And if it converges, to what?

• And does it converge every time?

• Supervised learning: almost always gradient descent
• Almost always converges

• Reinforcement learning: often not gradient descent!

Adapted from S. Levine

Stability and ease-of-use

Value function fitting
• At best, minimizes error of fit (“Bellman error”)

• Not the same as expected reward

• At worst, doesn’t optimize anything
• Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in

the nonlinear case

Model-based RL
• Model minimizes error of fit

• This will converge

• No guarantee that better model = better policy

Policy gradient
• The only one that actually performs gradient descent (ascent) on the true objective

Adapted from S. Levine

Common assumptions in policy learning

#1: full observability
• Generally assumed by value function fitting methods

• Can be mitigated by adding recurrence

#2: episodic learning
• Often assumed by pure policy gradient methods

• Less common in model-based RL

#3: continuity or smoothness
• Assumed by some continuous value function learning methods

• Often assumed by some model-based RL methods

Adapted from S. Levine

A Few Use Cases

Example: Trajectory Tracking with Drones

• Relatively slow motion

• The cost function is the difference
 between observed and desired states

Problem characteristics:

• Easy to model the dynamics (little to no data required)

• Easy to write a smooth cost function specifying the desired behavior

Perfect fit for direct optimization of actions, e.g., MPC, LQR, etc.

Example: Drone Racing

• High-speed motion

• The goal is to win the race

Problem characteristics:

• Complex dynamics, but not too bad (some data required)

• Not clear how to write a smooth cost function specifying the desired
behavior

Perfect fit for model-based RL, e.g., sim2real, dyna, dreamer, etc.

Example: Pick-and-place with an underactuated (soft) hand

• The goal is to pick up something

Problem characteristics:

• Dynamics is terribly complex (requires a lot of data)

• Not clear how to write a smooth cost function

• The robot is relatively safe

• Policy (might) not be too hard to learn: reach and close all fingers

Good fit (but hard in practice) for model-free RL, e.g., PPO, Q-learning.

Non-Robotic Example: LLM post-training

• The goal is to turn a base model into something humans like (chatbots)

Problem characteristics:

• Dynamics is challenging, but it can leverage pretraining.

• Writing a cost function is extremely hard (it has to be learned from
data)

Great fit for model-based RL: Iteratively learn a reward predictor and
optimize a policy (e.g., by doing PPO with the reward model on LLM
predictions).

	Slide 1: Introduction to Reinforcement Learning
	Slide 2: Some History
	Slide 3: Edward Thorndike
	Slide 4: The Law of Effect and Connectionism
	Slide 5: The Law of Effect and Connectionism
	Slide 6: Burrhus Frederic Skinner
	Slide 7: The Operant Conditioner Chamber (or Skinner Box)
	Slide 8: Towards Engineering RL: Andreae’s Stella (1962)
	Slide 9: Going Beyond Supervised Learning
	Slide 10: Temporal Difference Learning
	Slide 11: Let’s Get Technical!
	Slide 12: Definitions
	Slide 13: What do these things mean for a robot?
	Slide 14: Policies
	Slide 15: The goal of reinforcement learning
	Slide 16: The finite horizon case
	Slide 18: Alternative Formulations
	Slide 19: The Core Issue
	Slide 20: The general structure of an RL algorithm
	Slide 21: Example: Learning the Model (Model-Based RL)
	Slide 22: Example: Evolutionary Algorithms
	Slide 23: Cross-Entropy Methods
	Slide 25: Can we do better?
	Slide 27: Definitions
	Slide 28: Using Value Function and Q Functions
	Slide 29: Types of RL Algorithms (Optimization type)
	Slide 30: Direct Policy Gradients
	Slide 31: Value-Function Based
	Slide 32: Actor-Critic: Doing Both
	Slide 33: Model-Based RL Algorithms
	Slide 34: Why so many algorithms?
	Slide 35: Types of RL Algorithms (Sample efficiency)
	Slide 36: Types of RL Algorithms (Sample efficiency)
	Slide 37: Stability and ease-of-use
	Slide 38: Stability and ease-of-use
	Slide 39: Common assumptions in policy learning
	Slide 40: A Few Use Cases
	Slide 41: Example: Trajectory Tracking with Drones
	Slide 42: Example: Drone Racing
	Slide 43: Example: Pick-and-place with an underactuated (soft) hand
	Slide 44: Non-Robotic Example: LLM post-training

