Introduction to
Reinforcement Learning

ESE 6510
Antonio Loquercio

Thorndike, 1898
Animal Intelligence

Some History

Optimal Control

Trial and Error Learning

Edward Thorndike

* Interested in whether animals could learn
tasks through imitation or observation

» Tested this by creating puzzles that
animals had to solve to get food.

* Observed that different animals have
similar learning curves (S-shaped)

 He called this “The Law of Effect”

The Law of Effect and Connectionism

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the situation,
so that, when it recurs, they will be more likely to recur; those which are
accompanied or closely followed by discomfort to the animal will, other
things being equal, have their connections with that situation
weakened, so that, when it recurs, they will be less likely to occur. The

greater the satisfaction or discomfort, the greater the strengthening or
weakening of the bond. (Thorndike, 1911, p. 244)

The Law of Effect and Connectionism

He identified two core characteristics of the law of effect:

e Selectional, it involves trying alternatives and selecting among them
by comparing their consequences.

» Associative, the alternatives found by selection are associated with a
particular sensory state.

* What is something that is selectional but not associative? What is
associative but not selectional?

Burrhus Frederic Skinner

Extended the idea by asking three core questions:

* How do behaviors emerge in the first place?
Variation and selection (shaping).

* Once in the organism’s repertoire, how are they
directed and used?
The stimulus-response-reinforcer 3-way contingency

* How can very complex and seemingly novel

behaviors be explained?
Chaining. But it can’t be the whole story...

The Operant Conditioner Chamber (or Skinner Box)

* Expose the animal to carefully
controlled stimuli

* Collect response rates and use them
as a proxy for learning.

e Still, it oversimplifies the role of the
environment on the agent.

* Trivia: Project Pigeon | | A

Towards Engineering RL: Andreae’s Stella (1962)

STELLA: A Scheme for a Learning Machine
J. H. ANDREAE

(Submitted 23 August 1962 to the 2"¢ IFAC Congress, held at Basel, Switzerland, in 1963 and published in
the Conference Proceedings: Automation & Remote Controled. Broida, Butterworths (1969) pp.497-502.)

Summary

A scheme for a learning machine is described. In a basic exploratory mode the machine searches its
environment. Learning enables it to profit from those action sequences which lead to reward. By correlating
the changes in its environment wit h its actions, the machine can extract invariant features and use them to
guess profitable actions when its learned sequences fail. An internal mode of operation is described in
which the machine explores the possibilities of its future actions with a view to modifying its perforance.
The learning automaton, STELLA, is being constructed in the form of a mechanical tortoise which takes its
name from its laboratory origin: Standard Telecommunication Laboratories Ltd.

Stella (1962)

Experiments on the mechanization of game-learning
Part 1. Characterization of the model and its parameters

By Donald Michie

This paper describes a trial-and-error device which learns to play the game of Noughts and Crosses.
It was initially constructed from matchboxes and coloured beads and subsequently simulated in
essentials by a program for a Pegasus 2 computer. The parameters governing the adaptive
behaviour of this automaton are described and preliminary observations on its performance are

briefly reported.

A reason for being interested in games is that they
provide a microcosm of intellectual activity in general.
Those thought processes which we regard as being
specifically human accomplishments—learning from
experience, inductive reasoning, argument by analogy,
the formation and testing of new hypotheses, and so on

This picture of trial-and-error learning uses the
concepts and terminology of the experimental psy-
chologist. Observations on animals agree with common
sense in suggesting that the strength of reinforcement
becomes less as we proceed backwards along the loop
from the terminus towards the origin. The more recent

Menace (1961)

Going Beyond Supervised Learning

Punish/Reward: Learning with a Critic in
Adaptive Threshold Systems

BERNARD WIDROW, NARENDRA K. GUPTA, anp SIDHARTHA MAITRA

Abstract—An adaptive threshold element is able to “learn” a strategy
of play for the game blackjack (twenty-one) with a performance close to
that of the Thorp optimal strategy although the adaptive system has no
prior knowledge of the game and of the objective of play. After each
winning game the decisions of the adaptive system are “rewarded.”
After each losing game the decisions are “punished.” Reward is ac-
complished by adapting while accepting the actual decision as the desired
response. Punishment is accomplished by adapting while taking the
desired response to be the opposite of that of the actual decision. This
learning scheme is unlike “learning with a teacher” and unlike “un-
supervised learning.” It involves “bootstrap adaptation” or “learning
with a critic.” The critic rewards decisions which are members of
successful chains of decisions and punishes other decisions. A general
analytical model for learning with a critic is formulated and analyzed.
The model represents bootstrap learning per se. Although the hypotheses

PR N N ANUORE PN [T N T e S T T

(1973)

[17]-[26] exist and have been analyzed. A mixture of the
two has also been proposed [27].

The purpose of this paper is to describe a different type
of learning process involving adaptive linear threshold logic
elements. By means of this process, called learning with a
eritic or selective bootstrap adaptation, an adaptive logic
element learns what is required of it solely through the
receipt of favorable or unfavorable reactions resulting from
the application of an overall performance criterion to the
outcome of a series of decisions made by the element.

Until recently, adaptive threshold elements have been

used primarily as trainable pattern-classifying systems.
When these elements are heino trained a dacired recnnnca

A. Harry Klopf

Hedonistic

Neuron

A Theory of Memory,
Learning,
and Intelligence

(1981)

Temporal Difference Learning

* Driven by the difference between temporally successive estimates of
the same quantity (e.g., probability of winning in tic-tac-toe),
connected to the idea of secondary reinforcement (from Klopf).

* Pioneered by Arthur Samuel in 1954,

* The actor-critic architecture (Sutton, Barto, Anderson, 1981): TD
learning applied for trial-and-error problems (cartpole and games)

* Q-Learning (Watkins, 1989) Temporal-difference and optimal control
threads are brought together.

Let’s Get Technical!

Definitions

Markov property
@ independent of s;_1

®

* Markov Chain @ p(st41(se)

* Markov Decision Process @

S s S »
@ p(St+1|St,at) \2/ p(St+1|St,at)

 Partially Observed Markov Decision Process

. .ﬁfs) J(S3

N

What do these things mean for a robot?

* Whatis a, p, 0, r? What is s?

* s can be extremely large (possibly, infinite-dimensional)

Policies

* We typically use parametrized stochastic policies, which we’ll write as
mg(a|s).Can be a discrete or continuous distribution.

e O is a parameter vector that specifies the policy.

* For multi-dimensional output, we rarely model off-diagonal terms,
since the optimal policy of an MDP or POMDP is deterministic.

The goal of reinforcement learning

/ Policy or Agent

d
t atlst St+1|St, at)

||::]%

po(si,as,...,sr, 3—T

po(T)

- 9* = arg max Errpy(r) {zt: r(s¢, at)}

Adapted from S. Levine

The finite horizon case

6* = arg max Errpy () [Zt: T(St,at)]

T
= arg mgxx Z E(st,at)mpg(st,at) [T(Stv at)] po(St,a;) state-action marginal
t=1

p((st-i-laat-l-l)’(stvat)) =
p(Sty1(se,as)mo(az1(si41)

©©
®
(GXO)

@
&)

N

Adapted from S. Levine

Alternative Formulations

e Conditional Value at Risk (CVaR)

T
0* = arg mglx z CvaRaE(st,at)~p9(st,at) [7(s¢, ap)]
t=1

* Time-Varying Weight

T
0" = arg méiX z CtE(st,at)~p9(st,at) [T(St’ at)]
t=1

The Core Issue

r(Slr a) — ASl
a = mo(sp)
r(sy,a) = 1 (f(sp, me(sp)))

Jr dr Odmy
= %k

% Tlg a0

or ar @ | don’t know f
= .
on of

f might not be differentiable

The general structure of an RL algorithm

Which parts are expensive?

Adapted from S. Levine

Learning the Model (Model-Based RL)

Example

o
B

Go
)

iy 550
\\\KM“\\,,NN\\

learn f, such that sq11 ~ fs(st, ar)
backprop through f,4 and r to

train mp(s;) = ay

-
o

Adapted from S. Levine

Example: Evolutionary Algorithms

* Treat the whole process of turning parameters into a reward R as a
black box.

0 > . 2 2t T(St,a)

* Possible approach: Evolutionary Algorithms (e.g., CEM).

Algorithm 1 Cross Entropy Method

Initialize p € R¢, 0 € R¢
for iteration=1,2,... do
Collect n samples of 6; ~ N(p, diag(o))
Perform one episode with each 0;, obtaining reward R;
Select the top p% of samples (e.g. p = 20), which we’ll call the elite set
Fit a Gaussian distribution, with diagonal covariance, to the elite set, obtaining a
new |, C.
end for
Return the final p.

Cross-Entropy Methods

/.
E

. What’s this in CEM?

R—

Can we do better?

TN’pe(T

T
E Sta at

ESlNP(Sl) [E31NW(31|S1) [T(Sla al) T ESQNp(SQ|S]_,a]_) |:E82N7T(a2|52) [T(S2a 3—2) + ---|S2] |Sla al} |81H

l J
1

what if we knew this part?

Q(817 a]-) — T(Slj al) -I_ ESQNP(S‘2|S]_,8.1) [Eagrwr(a2|52) [T(SZJ 3.2) —I_ "'|82] |S].7 ali|

T
ETNP@(T) [ZT(St’at)] N Eslwp(sl) [EalNﬂ'(aﬂSl) [Q(Sl’a1)|81”
AN

easy to modify my(ay|sy) if Q(s1,a;) is known!

example: m(ay|s;) =1 if a; = argmax,, Q(s1,a1)

Adapted from S. Levine

Definitions
often uses Q or

Q-Function Value functions

Q7 (st,ar) = ZZ: E., [r(sy,ap)|st, a;): total reward from taking a; in s,

Value Function

V™(s¢) = Zz;t E, [r(s¢, a4)|st]: total reward from s;

V7(st) = at~7r(at|st)[Q7r(Staat)]

Eg,~ps;)[V7(s1)] is the RL objective!

Adapted from S. Levine

Using Value Function and Q Functions

Idea 1: if we have policy , and we know Q™ (s, a), then we can improve 1 :

setr’'(als) =1 if a = argmax, Q" (s,a)

this policy is at least as good as ™ (and probably better)!
and it doesn't matter what T is

Idea 2: compute gradient to increase probability of good actions a :
if Q™ (s,a) > V™(s), then ais better than average
(recall that V™(s) = E[Q™(s,a)] underm(a | s))
modify r(a | s) to increase probability of a if Q™ (s,a) > V™ (s)

These ideas are very important in RL!

Adapted from S. Levine

Types of RL Algorithms (Optimization type)
0" = arg max Erpy(r) [Z T(St,at)]

* Policy gradients: directly differentiate the above objective

* Value-based: estimate value function or Q-function of the optimal policy
(no explicit policy)
* Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

 Model-based RL: estimate the transition model, and then...
» Use it for planning (no explicit policy)
* Use it to improve a policy
 Something else

Adapted from S. Levine

Direct Policy Gradients

evaluate returns
R, =), r(s:a)
. 0« 0 + CIVQE[Zt T(St, at)]

Adapted from S. Levine

Value-Function Based

. fit V(s) or Q(s,a)
. set m(s) = arg max, (s, a)

Adapted from S. Levine

Actor-Critic: Doing Both
‘ P

Adapted from S. Levine

fit V(s) or Q(s,a)

Model-Based RL Algorithms

Just use the model to plan (no policy)

* Trajectory optimization/optimal control (primarily in continuous spaces) —
essentially backpropagation to optimize over actions

* Discrete planning in discrete action spaces — e.g., Monte Carlo tree search

Backpropagate gradients into the policy
* Requires some tricks to make it work

Use the model to learn a value function or a policy
* Dynamic programming
* Generate simulated experience for a model-free learner

A better model does not necessarily imply a better policy!

Adapted from S. Levine

Why so many algorithms?

Different tradeoffs

e Sample efficiency
 Stability & ease of use

Different assumptions
 Stochastic or deterministic?
* Continuous or discrete policy?
* Episodic or infinite horizon?

Different things are easy or hard in different settings
e Easier to represent the policy?
* Easier to represent the model?

Adapted from S. Levine

Types of RL Algorithms (Sample efficiency)

* On-policy algorithms:

e Use data from the current policy to estimate returns.
Every time the policy changes, we need new samples
from that policy.

e Off-policy algorithms:

e Can improve the policy with data from current and
previous policies.

* Offline reinforcement learning:

 Utilize previously collected data, without additional
online data.

e Conceptually similar to imitation learning, it can work
better in the low-data regime.

Adapted from S. Levine

Types of RL Algorithms (Sample efficiency)

off-policy W—— on-policy

more efficient less efficient

(fewer samples) atCtlor'Cr'ILc 4 (more samples)
style methods

ﬁ

direct action model-based model-based off-policy Onl—-pollcyd- t Evo(lj‘ft'cl”?ry or
optimization shallow RL deep RL Q-function PO 'CY gradien gradient-iree
. algorithms
learning

Why not always use the most sample-efficient algorithm available?

Adapted from S. Levine

Stability and ease-of-use

* Does it converge?
* And if it converges, to what?
 And does it converge every time?

* Supervised learning: almost always gradient descent
* Almost always converges

* Reinforcement learning: often not gradient descent!

Adapted from S. Levine

Stability and ease-of-use

Value function fitting

* At best, minimizes error of fit (“Bellman error”)
* Not the same as expected reward

* At worst, doesn’t optimize anything

 Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in
the nonlinear case

Model-based RL

e Model minimizes error of fit
e This will converge

* No guarantee that better model = better policy

Policy gradient
* The only one that actually performs gradient descent (ascent) on the true objective

Adapted from S. Levine

Common assumptions in policy learning

#1: full observability
e Generally assumed by value function fitting methods
* Can be mitigated by adding recurrence

#2: episodic learning
e Often assumed by pure policy gradient methods
* Less common in model-based RL

#3: continuity or smoothness
e Assumed by some continuous value function learning methods
e Often assumed by some model-based RL methods

Adapted from S. Levine

A Few Use Cases

Example: Trajectory Tracking with Drones

* Relatively slow motion

* The cost function is the difference /x
between observed and desired states

S

Problem characteristics:
e Easy to model the dynamics (little to no data required)
e Easy to write a smooth cost function specifying the desired behavior

Perfect fit for direct optimization of actions, e.g., MPC, LQR, etc.

Example: Drone Racing

* High-speed motion
* The goal is to win the race

Problem characteristics:
* Complex dynamics, but not too bad (some data required)

* Not clear how to write a smooth cost function specifying the desired
behavior

Perfect fit for model-based RL, e.g., sim2real, dyna, dreamer, etc.

Example: Pick-and-place with an underactuated (soft) hand

* The goal is to pick up something

Problem characteristics:

* Dynamics is terribly complex (requires a lot of data)
* Not clear how to write a smooth cost function

* The robot is relatively safe

 Policy (might) not be too hard to learn: reach and close all fingers

Good fit (but hard in practice) for model-free RL, e.g., PPO, Q-learning.

Non-Robotic Example: LLM post-training

* The goal is to turn a base model into something humans like (chatbots)

Problem characteristics:
* Dynamics is challenging, but it can leverage pretraining.

* Writing a cost function is extremely hard (it has to be learned from
data)

Great fit for model-based RL: Iteratively learn a reward predictor and
optimize a policy (e.g., by doing PPO with the reward model on LLM

predictions).

	Slide 1: Introduction to Reinforcement Learning
	Slide 2: Some History
	Slide 3: Edward Thorndike
	Slide 4: The Law of Effect and Connectionism
	Slide 5: The Law of Effect and Connectionism
	Slide 6: Burrhus Frederic Skinner
	Slide 7: The Operant Conditioner Chamber (or Skinner Box)
	Slide 8: Towards Engineering RL: Andreae’s Stella (1962)
	Slide 9: Going Beyond Supervised Learning
	Slide 10: Temporal Difference Learning
	Slide 11: Let’s Get Technical!
	Slide 12: Definitions
	Slide 13: What do these things mean for a robot?
	Slide 14: Policies
	Slide 15: The goal of reinforcement learning
	Slide 16: The finite horizon case
	Slide 18: Alternative Formulations
	Slide 19: The Core Issue
	Slide 20: The general structure of an RL algorithm
	Slide 21: Example: Learning the Model (Model-Based RL)
	Slide 22: Example: Evolutionary Algorithms
	Slide 23: Cross-Entropy Methods
	Slide 25: Can we do better?
	Slide 27: Definitions
	Slide 28: Using Value Function and Q Functions
	Slide 29: Types of RL Algorithms (Optimization type)
	Slide 30: Direct Policy Gradients
	Slide 31: Value-Function Based
	Slide 32: Actor-Critic: Doing Both
	Slide 33: Model-Based RL Algorithms
	Slide 34: Why so many algorithms?
	Slide 35: Types of RL Algorithms (Sample efficiency)
	Slide 36: Types of RL Algorithms (Sample efficiency)
	Slide 37: Stability and ease-of-use
	Slide 38: Stability and ease-of-use
	Slide 39: Common assumptions in policy learning
	Slide 40: A Few Use Cases
	Slide 41: Example: Trajectory Tracking with Drones
	Slide 42: Example: Drone Racing
	Slide 43: Example: Pick-and-place with an underactuated (soft) hand
	Slide 44: Non-Robotic Example: LLM post-training

