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Some History

Optimal Control Trial and Error Learning



Edward Thorndike

• Interested in whether animals could learn 
tasks through imitation or observation

• Tested this by creating puzzles that 
animals had to solve to get food.

• Observed that different animals have 
similar learning curves (S-shaped)

• He called this “The Law of Effect”



The Law of Effect and Connectionism

Of several responses made to the same situation, those which are 
accompanied or closely followed by satisfaction to the animal will, 
other things being equal, be more firmly connected with the situation, 
so that, when it recurs, they will be more likely to recur; those which are 
accompanied or closely followed by discomfort to the animal will, other 
things being equal, have their connections with that situation 
weakened, so that, when it recurs, they will be less likely to occur. The 
greater the satisfaction or discomfort, the greater the strengthening or 
weakening of the bond. (Thorndike, 1911, p. 244)



The Law of Effect and Connectionism

He identified two core characteristics of the law of effect:

• Selectional, it involves trying alternatives and selecting among them 
by comparing their consequences.

• Associative, the alternatives found by selection are associated with a 
particular sensory state.

• What is something that is selectional but not associative? What is 
associative but not selectional?



Burrhus Frederic Skinner

Extended the idea by asking three core questions:

• How do behaviors emerge in the first place?
Variation and selection (shaping).

• Once in the organism’s repertoire, how are they 
directed and used?
The stimulus-response-reinforcer 3-way contingency

• How can very complex and seemingly novel 
behaviors be explained?
Chaining. But it can’t be the whole story…



The Operant Conditioner Chamber (or Skinner Box)

• Expose the animal to carefully 
controlled stimuli

• Collect response rates and use them 
as a proxy for learning.

• Still, it oversimplifies the role of the 
environment on the agent.

• Trivia: Project Pigeon



Towards Engineering RL: Andreae’s Stella (1962)

Stella (1962) Menace (1961)



Going Beyond Supervised Learning

(1973)

(1981)



Temporal Difference Learning

• Driven by the difference between temporally successive estimates of 
the same quantity (e.g., probability of winning in tic-tac-toe), 
connected to the idea of secondary reinforcement (from Klopf).

• Pioneered by Arthur Samuel in 1954.

• The actor-critic architecture (Sutton, Barto, Anderson, 1981): TD 
learning applied for trial-and-error problems (cartpole and games)

• Q-Learning (Watkins, 1989) Temporal-difference and optimal control 
threads are brought together.



Let’s Get Technical!



Definitions

• Markov Chain

• Markov Decision Process

• Partially Observed Markov Decision Process



What do these things mean for a robot? 

• What is a, p, o, r? What is s?

• s can be extremely large (possibly, infinite-dimensional)



Policies

• We typically use parametrized stochastic policies, which we’ll write as 
𝜋𝜃 a | s . Can be a discrete or continuous distribution.

•  𝜃 is a parameter vector that specifies the policy.

• For multi-dimensional output, we rarely model off-diagonal terms, 
since the optimal policy of an MDP or POMDP is deterministic. 



The goal of reinforcement learning

𝜋st at

Environ- 
ment

Policy or Agent

Adapted from S. Levine



The finite horizon case

Adapted from S. Levine



Alternative Formulations

• Conditional Value at Risk (CVaR) 

𝜃⋆ = arg max
𝜃
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• Time-Varying Weight 

𝜃⋆ = arg max
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The Core Issue
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The general structure of an RL algorithm

Which parts are expensive?

Improve 
the policy

Generate 
samples 
→ run the 

policy

Fit a 
model, 

estimate 
the return

Adapted from S. Levine



Example: Learning the Model (Model-Based RL)

Improve the 
policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Example: Evolutionary Algorithms

• Treat the whole process of turning parameters into a reward R as a 
black box.

• 𝜃 →  → σt r(st , at )

• Possible approach: Evolutionary Algorithms (e.g., CEM).



Cross-Entropy Methods

What’s this in CEM?
Improve the 

policy

Generate 
samples 
→ run the 

policy

Compute 
the return



Can we do better?

Adapted from S. Levine



Q-Function

Value Function

Definitions
often uses Q or 
Value functions

Improve 
the policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Using Value Function and Q Functions

Idea 1: if we have policy 𝜋, and we know 𝑄𝜋(𝐬, 𝐚), then we can improve 𝜋 :

 set 𝜋′(𝐚 ∣ 𝐬) = 1        if    𝐚 = argmaxa 𝑄𝜋(𝐬, 𝐚)

 this policy is at least as good as 𝜋 (and probably better)!
 and it doesn't matter what 𝜋 is

Idea 2: compute gradient to increase probability of good actions 𝐚 :
 
 if 𝑄𝜋(𝐬, 𝐚) > 𝑉𝜋(𝐬), then 𝐚 is better than average  
 (recall that 𝑉𝜋(𝐬) = 𝐸 𝑄𝜋(𝐬, 𝐚)  under 𝜋(𝐚 ∣ 𝐬) ) 
 modify 𝜋(𝐚 ∣ 𝐬) to increase probability of 𝐚 if 𝑄𝜋(𝐬, 𝐚) > 𝑉𝜋(𝐬)

These ideas are very important in RL!

Adapted from S. Levine



Types of RL Algorithms (Optimization type)

• Policy gradients: directly differentiate the above objective 

• Value-based: estimate value function or Q-function of the optimal policy 
     (no explicit policy) 

• Actor-critic: estimate value function or Q-function of the current policy, 
   use it to improve policy 

• Model-based RL: estimate the transition model, and then… 
• Use it for planning (no explicit policy) 

• Use it to improve a policy 

• Something else

Adapted from S. Levine



Direct Policy Gradients

Improve the 
policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Value-Function Based

Improve the 
policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Actor-Critic: Doing Both

Improve the 
policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Model-Based RL Algorithms

Just use the model to plan (no policy) 
• Trajectory optimization/optimal control (primarily in continuous spaces) – 

essentially backpropagation to optimize over actions
• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search 

Backpropagate gradients into the policy 
• Requires some tricks to make it work 

Use the model to learn a value function or a policy
• Dynamic programming 
• Generate simulated experience for a model-free learner

A better model does not necessarily imply a better policy!

Adapted from S. Levine



Why so many algorithms?

Different tradeoffs
• Sample efficiency

• Stability & ease of use

Different assumptions
• Stochastic or deterministic?

• Continuous or discrete policy?

• Episodic or infinite horizon?

Different things are easy or hard in different settings
• Easier to represent the policy?

• Easier to represent the model?

Adapted from S. Levine



Types of RL Algorithms (Sample efficiency)

• On-policy algorithms:
• Use data from the current policy to estimate returns. 

Every time the policy changes, we need new samples 
from that policy. 

• Off-policy algorithms:
• Can improve the policy with data from current and 

previous policies.

• Offline reinforcement learning:
• Utilize previously collected data, without additional 

online data.
• Conceptually similar to imitation learning, it can work 

better in the low-data regime. 

Improve 
the policy

Generate 
samples 
→ run the 

policy

Fit a model, 
estimate the 

return

Adapted from S. Levine



Types of RL Algorithms (Sample efficiency)

Why not always use the most sample-efficient algorithm available?

off-policy on-policy
more efficient
(fewer samples)

less efficient
(more samples)

Evolutionary or 
gradient-free

On-policy 
policy gradient 
algorithms

actor-critic 
style methods

off-policy 
Q-function 
learning

model-based 
deep RL

model-based 
shallow RL

direct action 
optimization

Adapted from S. Levine



Stability and ease-of-use

• Does it converge? 

• And if it converges, to what? 

• And does it converge every time?

• Supervised learning: almost always gradient descent
• Almost always converges

• Reinforcement learning: often not gradient descent!

Adapted from S. Levine



Stability and ease-of-use

Value function fitting 
• At best, minimizes error of fit (“Bellman error”) 

• Not the same as expected reward 

• At worst, doesn’t optimize anything 
• Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in 

the nonlinear case 

Model-based RL 
• Model minimizes error of fit

•  This will converge 

• No guarantee that better model = better policy 

Policy gradient
• The only one that actually performs gradient descent (ascent) on the true objective

Adapted from S. Levine



Common assumptions in policy learning

#1: full observability 
• Generally assumed by value function fitting methods 

• Can be mitigated by adding recurrence 

#2: episodic learning
• Often assumed by pure policy gradient methods 

• Less common in model-based RL

#3: continuity or smoothness 
• Assumed by some continuous value function learning methods 

• Often assumed by some model-based RL methods

Adapted from S. Levine



A Few Use Cases



Example: Trajectory Tracking with Drones

• Relatively slow motion

• The cost function is the difference
 between observed and desired states

Problem characteristics:

• Easy to model the dynamics (little to no data required)

• Easy to write a smooth cost function specifying the desired behavior

Perfect fit for direct optimization of actions, e.g., MPC, LQR, etc.



Example: Drone Racing

• High-speed motion

• The goal is to win the race

Problem characteristics:

• Complex dynamics, but not too bad (some data required)

• Not clear how to write a smooth cost function specifying the desired 
behavior

Perfect fit for model-based RL, e.g., sim2real, dyna, dreamer, etc.



Example: Pick-and-place with an underactuated (soft) hand

• The goal is to pick up something

Problem characteristics:

• Dynamics is terribly complex (requires a lot of data)

• Not clear how to write a smooth cost function

• The robot is relatively safe

• Policy (might) not be too hard to learn: reach and close all fingers

Good fit (but hard in practice) for model-free RL, e.g., PPO, Q-learning.



Non-Robotic Example: LLM post-training

• The goal is to turn a base model into something humans like (chatbots)

Problem characteristics:

• Dynamics is challenging, but it can leverage pretraining. 

• Writing a cost function is extremely hard (it has to be learned from 
data)

Great fit for model-based RL: Iteratively learn a reward predictor and 
optimize a policy (e.g., by doing PPO with the reward model on LLM 
predictions). 
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