
A Gentle Intro to Sim2Real

ESE 6510
Antonio Loquercio

M.C. Escher,

Relativity, 1953

What is Sim2Real?

A family of methods that enable
policies trained in an imperfect
world model to successfully
transfer and operate in the “real”
environment.

Improve the
policy

Generate
samples
→ run the

policy

Fit a model,
estimate the

return

Generate
samples in
imperfect
simulator

What is Sim2Real?

A family of methods that enable
policies trained in an imperfect
world model to successfully
transfer and operate in the “real”
environment.

Evaluations of the policy in the
real environment are used to
improve both the simulation and
the policy learning approach.

Improve the
policy

Run policy in
the real

environment

Fit a model,
estimate the

return

Generate
samples in
imperfect
simulator

The Simulation to Reality Gap(s)

• Dynamics gap:

 𝑠𝑡+1 = 𝑓𝑟𝑒𝑎𝑙 𝑠𝑡 , 𝑎𝑡 ≠ 𝑓𝑠𝑖𝑚 𝑠𝑡 , 𝑎𝑡

• Sensory gap:

 ot = 𝑜𝑏𝑠𝑟𝑒𝑎𝑙 𝑠𝑡 ≠ 𝑜𝑏𝑠𝑠𝑖𝑚(𝑠𝑡)

• Semantic (or Environment) gap:
• Things should have the right size relatively to each other and placed where it

makes sense.

• Other agents should behave in a way that is realistic.

Categories of Sim2Real Algorithms

• Domain Randomization
• Naïve

• Adaptive

• Physics-based

• Adaptive Control
• Explicit System Identification

• Implicit System Identification

• Abstractions-based
• Visual Abstractions

• Control Abstractions

Most papers use a mix of these techniques. But some applications
require care.

How to pick the parameters distribution?

• Naïve

• Performance-based (Adaptive)

• Physics-based

How to pick the parameters distribution?

• Naïve: Select the subspace of parameters you are the most uncertain
about. Fix the ones you know.

• If no prior information is available, use a uniform distribution over the
range of parameters.

Limitations?

• Compute intensive/challenging to converge if the ranges are large.

• Some combinations of parameters potentially make no sense; why
train on them?

How to pick the parameters distribution?

• Performance-based (adaptive): Gradually adapt the ranges to make
the agent never too successful or unsuccessful: Curriculum-like.

• Popularized by OpenAI’s Rubik’s Cube paper
(https://openai.com/index/solving-rubiks-cube/)

High Frequency

Low Frequency

How to pick the parameters distribution?

• Performance-based (adaptive): Faster to converge than traditional DR

Solving Rubik's Cube with a Robot Hand, 2019

How to pick the parameters distribution?

• Performance-based (adaptive): Can train on larger ranges and
therefore transfer better (note: comparison not 100% fair).

Solving Rubik's Cube with a Robot Hand, 2019

How to pick the parameters distribution?

• Performance-based (adaptive): Not very much used in practice (but I
have seen some good recent papers using it).

• Limitations?

• Many more hyperparameters beyond the ranges
• Success/Failure thresholds, minimum waiting time, delta update, …

• To some extent, this happens already if you train with massively
parallel environments:
• At the beginning of training, the batch will be full of “easy” parameters but

later it will balance.

How to pick the parameters distribution?

• Physics-based: Use prior knowledge about the system to generate
parameter combinations that are physically plausible.

• Why train on this?

Heavy Quadcopter

Tiny Propellers

How to pick the parameters distribution?

• Physics-based: Use prior knowledge about the system to generate
parameter combinations that are physically plausible.

A Learning-based Quadcopter Controller with Extreme Adaptation, 2025

How to pick the parameters distribution?

• Interesting (but problem-specific) finding. Physics-based
randomization enables generalization beyond the training range.

A Learning-based Quadcopter Controller with Extreme Adaptation, 2025

Flying Different Morphologies

QUaRTM: A Quadcopter with Unactuated Rotor Tilting Mechanism Capable of Faster, More Agile, and More Efficient Flight,
Jerry Tang, Karan P. Jain, and Mark W. Mueller

27
A Learning-based Quadcopter Controller with Extreme Adaptation, 2025

Flying Different Morphologies

• ~30% mass above the propellers

• 3X larger x-z inertia than a normal drone.

A Learning-based Quadcopter Controller with Extreme Adaptation, 2025

A Learning-based Quadcopter Controller with Extreme Adaptation, 2025

How to pick the parameters distribution?

• Physics-based: Use prior knowledge about the system to generate
parameter combinations that are physically plausible.

• Limitations?

• Unclear how to design these relationships for complex systems (e.g.,
a dexterous hand).

• Unclear how to apply this for sensory and semantic randomization.

Why does domain randomization work? (Disclaimer: Opinion)

• Let’s go back to the optimization objective of domain randomization

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝔼𝑒~𝐷 𝐶 𝜃, 𝑒

• A good solution to this problem is learning to quickly learn/adapt.

• For example, the agent can learn how to do quick estimation of
parameters and learn the relation between parameters and actions
(e.g., the larger the mass, the larger the force).

• This does not require that the real world is in the simplex of the
parameter ranges.

• Can we design algorithms to bias the agent to learn this behavior?

Categories of Sim2Real Algorithms

• Domain Randomization
• Naïve

• Adaptive

• Physics-based

• Adaptive Control
• Explicit System Identification

• Implicit System Identification

• Abstractions-based
• Visual Abstractions

• Control Abstractions

Adaptive Control

• Key Idea: Identify the parameters of the system from (possibly
limited) on-policy experience. Condition or finetune the policy on the
estimated parameters.

Source: Wikipedia

Adaptive Control

Two types of adaptive sim2real:

• Explicit parameter estimation (Real-to-Sim): find the actual
parameters.

• Implicit parameter estimation: find a compressed representation of
the parameters.

Some methods do a hybrid of these two (identify what is fixed, adapt
to things that change).

Adaptive Control: Explicit Parameter Estimation

ICRA, 2010

Adaptive Control: Explicit Parameter Estimation

A Simple Learning Strategy for High-Speed Quadcopter Multi-Flips, 2010

• Estimation is never perfect: uncertainty
in some parameters always remains.

• To account for this, explicit identification
is generally coupled with domain
randomization.

Adaptive Control: Explicit Parameter Estimation

Modern take to the problem: estimate not only physical parameters,
but the whole scene.

Reconciling Reality through Simulation: A Real-to-Sim-to-Real Approach for Robust Manipulation, 2024

Adaptive Control: Explicit Parameter Estimation

Modern take on the problem: estimate not only physical parameters, but the
whole scene.

Limitations of scene-level real-to-sim?

• The more complex the scene, the slower the simulation.

• Articulation of objects is non-trivial when done for more than a handful of
objects (particularly hard for deformable objects).

• Reconstruction artifacts might impact the behavior of the policy. Policies
are generally finetuned, not trained from scratch.

However, we don’t (yet) have better methods to cope with the semantic
sim2real gap!

Adaptive Control

• Explicit parameter estimation (Real-to-Sim): find the actual
parameters.

• Limitations?

• Some parameters might not be identifiable given some limited on-
policy experience.

• Multiple parameters might explain the same behavior. Which one to
pick?

• We might not really need the parameters by themselves, only their
relation to the task.

Adaptive Control

• Implicit parameter estimation: find a compressed representation of
the parameters.

• Key insights:
• Parameters cannot be uniquely identified.

Example: in drones, we can estimate the thrust-to-weight ratio, but not the
exact mass and thrust.

• Parameters that cannot be uniquely identified are not necessary for my
downstream task.
Example: If I only care about controlling the drone’s acceleration, the actual
mass and thrust are not important.

Adaptive Control

• Implicit parameter estimation: find a compressed representation of
the parameters.

• The origins of these techniques are in the adaptive control literature
for linear systems (implicit adaptive control).

• More recently adapted to learning-based approaches and sim2real.

θ
𝑠𝑡

𝑧𝑡

𝑎𝑡

State

Latent
parameters

Action
𝑠𝑡:𝑡−𝐾

State
History

𝜓
Explicit

parameters
𝑒𝑡

Explicit Adaptation

θ
𝑠𝑡

𝑧𝑡

𝑎𝑡

State

Latent
parameters

Action
𝑠𝑡:𝑡−𝐾

State
History

𝜓Implicit Adaptation

Latent-Based Identification.

Core question: how to identify the parameters combination that can be
identified and are important for the task?

Possible answer: Learn it from data by training a highly compressed
latent representation of the parameters.

Initially proposed by:

1. Learning Quadrupedal Locomotion over Challenging Terrain, Lee et al., 2020

2. Rapid Motor Adaptation, Kumar et al., 2021

Rapid Motor Adaptation

• Dim (𝑧𝑡) << dim (𝑒𝑡)

• Core assumption: compression leads to the discovery of parameter combinations
that are important for the task and are therefore possible to identify.

• Can I run this policy on a physical robot?

Trainable modules in red

Rapid Motor Adaptation

• The history of previous actions and states is used for predicting the latent representation of parameters.
• The action policy is kept frozen (in some implementations)

Rapid Motor Adaptation

• The adaptation module and policy can be deployed zero-shot on the robot.
• Strong performance in environments not modeled at training time (e.g., sand, stairs,

foliage)

Quick Adaptation

Quick Adaptation

The approach has been applied to many locomotion problems

• Parkour
• Examples:

• Parkour in the wild: Learning a general and extensible agile locomotion policy using
multi-expert distillation and RL Fine-tuning, Rudin et al. 2025

• Extreme Parkour with Legged Robots, Cheng et al., 2024
• Robot Parkour Learning, Zhuang et al., 2023

• Vision-based locomotion
• Examples:

• Legged Locomotion in Challenging Terrains using Egocentric Vision, Agarwal et al, 2022
• Learning robust perceptive locomotion for quadrupedal robots in the wild, Miki et al,

2022

• General takeaway:
• The more challenging the task is, the more tricks are required (several RL

experts, curriculum on contacts models, tailored perception systems).
• The approach does not simply scale.

Rapid Motor Adaptation

• Limitations?

Limitations and How to (partially) address them

• The compression objective could not be sufficient to achieve the goal of
predictability.
• Add an extra objective during phase I training which focuses on predictability

• Example:
• Deep Whole-Body Control: Learning a Unified Policy for Manipulation and Locomotion, Fu et al. 2022.

• The base policy should potentially change its behavior when it does not observe
the ground truth parameters.
• Fine-tune the base policy together with the adaptation module with RL.

• Examples:
• Adapting Rapid Motor Adaptation for Bipedal Robots. Kumar et al., 2022

• A two-stage procedure is cumbersome. Errors can compound between phases.
• Recent work seems to prefer the reward/observation engineering route

Categories of Sim2Real Algorithms

• Domain Randomization
• Naïve

• Adaptive

• Physics-based

• Adaptive Control
• Explicit System Identification

• Implicit System Identification

• Abstractions-based
• Visual Abstractions

• Control Abstractions

Abstraction-based Sim2Real

General idea: train the policy on curated sensory/control abstractions that reduce
the gap between simulation and real world.

Examples of Sensory Abstractions

• Gate Detection in drone racing

• Pose estimation and mapping for navigation

• 6D Object Pose detection for manipulation

• Many others (each problem can have its own simulation engineering)

Control Abstractions

• Low-level controllers (e.g., MPC) can track trajectories or joint
positions, so that the policy can focus on higher-level control.
• Paradoxically, this could potentially lead to an increased sim2real gap if the

low-level controller does not behave similarly in simulation and the real
world.

• Randomization becomes harder to do (need to make the low-level adaptive)

Visual
Abstraction

Neural Network Motors
(Adaptive)

Low-Level Control

An example: High-Speed Obstacle Avoidance

Learning High-Speed Flight in the Wild, Loquercio et al., 2021

Loquercio et. al.,
Science Robotics, 2021

56

An example: Dexterous Manipulation

DextrAH-RGB: Visuomotor Policies to Grasp Anything with Dexterous Hands, Singh et al., 2025
DextrAH-G: Pixels-to-Action Dexterous Arm-Hand Grasping with Geometric Fabrics, Lum et al., 2024

An example: Dexterous Manipulation

DextrAH-RGB: Visuomotor Policies to Grasp Anything with Dexterous Hands, Singh et al., 2025
DextrAH-G: Pixels-to-Action Dexterous Arm-Hand Grasping with Geometric Fabrics, Lum et al., 2024

Abstraction-based Sim2Real

• General idea: train the policy on curated sensory/control abstractions
that reduce the gap between simulation and real world.

• A neat way to introduce inductive bias in the policy learning process.

• Limitations?
• Abstractions require modularity, which comes with several disadvantages

(e.g., compounding errors, latency, computing the abstraction might be
harder than the task itself).

• Abstractions are mostly task-specific.

Categories of Sim2Real Algorithms

• Domain Randomization
• Naïve

• Adaptive

• Physics-based

• Adaptive Control
• Explicit System Identification

• Implicit System Identification

• Abstractions-based
• Visual Abstractions

• Control Abstractions

Most papers use a mix of these techniques. But some applications
require care.

Tips and Tricks to Make Your
Sim2Real Pipeline Work

The Steps of a Sim2Real Pipeline

• Step 1: Decide on your abstractions!
• Sensory

• Which sensory inputs can I get in the real world?

• What is the noise associated with these inputs?

• Are these sensory inputs fast or slow to simulate? (Point clouds are very fast, but
depth/RGB images are slow)

• Control
• At which level should my policy operate? (motor commands, joint positions, velocity

commands, pose commands, etc.)

• How well can you simulate the control hierarchy on which the policy will rely? (example:
the Franka manipulator).

PolicySensors Motors
Control

Abstractions
Visual

Abstractions

The Steps of a Sim2Real Pipeline

• Step 2: Decide on your strategy for policy training

• Single Step?
• Mostly works if your policy is reactive and/or sensor simulation is fast.
• Well-suited to policy learning via imitation.
• More challenging for policy learning with RL: Might require very careful reward

engineering.
• Core advantage: the policy can be directly deployed on hardware.

• Two (or more) Steps? (Privileged Training + Distillation via Imitation)
• Train a privileged policy with ground-truth information (e.g., location of obstacles)
• Distill the privileges policy into another policy with sensor observation (generally called

the teacher-student paradigm)
• Most common for policy learning with RL when you have some sensory inputs or control

abstraction that are slow to simulate (e.g., images).

Two (or more) Steps for Policy Learning

Learning by cheating, Chen et al, 2019

The Steps of a Sim2Real Pipeline

• Step 3: Decide on your randomization/adaptation strategy

• Randomize and conquer
• Identify the parameters that are uncertain and might require randomization

• Identify suitable randomization ranges

• The less you randomize, the faster and more effective policy training will be.

• The less you randomize, the lower the probability of effective sim2real.

• Shall I use an adaptation module (RMA-style)?
• If yes, you are forced to a two-step training procedure (see previous slide). However, it

often helps performance.

• If you’re doing a two-step procedure anyway because your sensor simulation is slow, it is
worth doing it.

The Steps of a Sim2Real Pipeline

• Step 4: Design your environment

• One of the most complicated parts
• What objects do you need in the scene to accomplish the task?

• Is geometry sufficient, or do you also need visual realism?

• Scene randomization is important! The axes of randomization depend on your task.

• Do not overthink it
• Often, the environments in the simulation and the real world do not need to match

exactly.

• The more complex the scene, the slower the simulation will be.

• Start simple and increase complexity if you notice specific failures.

Tips to Improve Your Sim2Real Performance

Tune your control abstraction properly!

• Having the same PID gains in simulation and the real world is neither
sufficient nor necessary.

• You need to match the behaviors as much as possible (the gains could
potentially be different).

• Keep latency into account.

Solving Rubik’s Cube with a Robot Hand, Akkaya et al.

Tips to Improve Your Sim2Real Performance

Calibrate your sensors

• Tiny errors in sensor placement can lead to vastly different
observations.

• Do a good calibration (using off-the-shelf tools) and add a small
randomization on top.

Tips to Improve Your Sim2Real Performance

• Use noise models when matching the sensor-control abstractions is
challenging.

• Train the noise models on real-world data
• Add a residual neural network to predict dynamics or sensor observations.
• Examples:

• NM𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 st, at = 𝑓𝑟𝑒𝑎𝑙 𝑠𝑡 , 𝑎𝑡 − 𝑓𝑠𝑖𝑚 𝑠𝑡 , 𝑎𝑡

• NM𝑜𝑏𝑠 𝑠𝑡 = 𝑜𝑏𝑠𝑟𝑒𝑎𝑙 𝑠𝑡 − 𝑜𝑏𝑠𝑠𝑖𝑚(𝑠𝑡)

Tips to Improve Your Sim2Real Performance

Evaluate often on the physical robot

• Unfortunately, often strong performance in simulation does not lead
to strong performance in the real world.
• Corollary: Checkpoint picking is hard; Different seeds of the same run could

have vastly different performance.

• Sim2Sim (e.g., Isaac to Mujoco) is often very informative in the early stage of
a project.

• Do a detailed analysis of any real-world evaluation you do.
• Did the control abstraction work as I expected?

• Did the visual abstraction work as I expected?

• How different is the behavior in the simulation and the real world?

High-Level Advice for Successful Sim2Real

• Start simple, move slowly
• As end-to-end as possible, without complex sensor/control abstractions that

are hard to match.
• Increase the complexity of abstractions if real-world results are not as good.
• Only add learning-based noise models if strictly necessary (they come with a

lot of challenges in terms of training and generalization).
• Don’t be afraid to mess around with the simulator’s engine (contact models,

integrator, robot's physical parameters).

• Use good engineering practices
• Don’t do more than one change at a time.
• Don’t use ROS unless strictly necessary (modelling non-constant

communication delays can be hard)
• Use fast simulators, at least in early development.
• (RL-Specific): Keep your rewards simple.

Discussion and Outlook

• Sim2Real is a promising approach for robot learning, because it enables:
• Train safely
• Carefully control the experience of the agent during training
• Explore counterfactuals

• Limitations:
• Not yet a clean science. It looks more like a collection of good practices
• No good/scalable way to account for the semantic gap between simulated and real-

world environments
• Corollary: Environment design is often the hardest part of a sim2real project

• Modern directions:
• Learning abstractions from data
• Sim2Real from data-driven simulators
• Continual learning of simulator, policy, and abstractions

	Slide 1: A Gentle Intro to Sim2Real
	Slide 2: What is Sim2Real?
	Slide 3: What is Sim2Real?
	Slide 7: The Simulation to Reality Gap(s)
	Slide 9: Categories of Sim2Real Algorithms
	Slide 17: How to pick the parameters distribution?
	Slide 18: How to pick the parameters distribution?
	Slide 19: How to pick the parameters distribution?
	Slide 20: How to pick the parameters distribution?
	Slide 21: How to pick the parameters distribution?
	Slide 22: How to pick the parameters distribution?
	Slide 23: How to pick the parameters distribution?
	Slide 24: How to pick the parameters distribution?
	Slide 25: How to pick the parameters distribution?
	Slide 26: Flying Different Morphologies
	Slide 27
	Slide 28: Flying Different Morphologies
	Slide 29
	Slide 30: How to pick the parameters distribution?
	Slide 31: Why does domain randomization work? (Disclaimer: Opinion)
	Slide 32: Categories of Sim2Real Algorithms
	Slide 33: Adaptive Control
	Slide 34: Adaptive Control
	Slide 35: Adaptive Control: Explicit Parameter Estimation
	Slide 36: Adaptive Control: Explicit Parameter Estimation
	Slide 37: Adaptive Control: Explicit Parameter Estimation
	Slide 38: Adaptive Control: Explicit Parameter Estimation
	Slide 39: Adaptive Control
	Slide 40: Adaptive Control
	Slide 41: Adaptive Control
	Slide 42: Latent-Based Identification.
	Slide 43: Rapid Motor Adaptation
	Slide 44: Rapid Motor Adaptation
	Slide 45: Rapid Motor Adaptation
	Slide 46: Quick Adaptation
	Slide 47: Quick Adaptation
	Slide 48: The approach has been applied to many locomotion problems
	Slide 49: Rapid Motor Adaptation
	Slide 50: Limitations and How to (partially) address them
	Slide 51: Categories of Sim2Real Algorithms
	Slide 52: Abstraction-based Sim2Real
	Slide 53: Examples of Sensory Abstractions
	Slide 54: Control Abstractions
	Slide 55: An example: High-Speed Obstacle Avoidance
	Slide 56
	Slide 57: An example: Dexterous Manipulation
	Slide 58: An example: Dexterous Manipulation
	Slide 59: Abstraction-based Sim2Real
	Slide 60: Categories of Sim2Real Algorithms
	Slide 61: Tips and Tricks to Make Your Sim2Real Pipeline Work
	Slide 62: The Steps of a Sim2Real Pipeline
	Slide 63: The Steps of a Sim2Real Pipeline
	Slide 64: Two (or more) Steps for Policy Learning
	Slide 65: The Steps of a Sim2Real Pipeline
	Slide 66: The Steps of a Sim2Real Pipeline
	Slide 67: Tips to Improve Your Sim2Real Performance
	Slide 68: Tips to Improve Your Sim2Real Performance
	Slide 69: Tips to Improve Your Sim2Real Performance
	Slide 70: Tips to Improve Your Sim2Real Performance
	Slide 71: High-Level Advice for Successful Sim2Real
	Slide 72: Discussion and Outlook

