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MDPs and Policies

• We consider a Markov Decision Process (MDP)
M = (S,A,P, r , γ),
• S and A are state and action spaces, P(s ′ | s, a) is the
transition kernel, r(s, a) is the expected immediate reward,
and γ ∈ (0, 1) is the discount factor.
• A trajectory τ = (s0, a0, s1, a1, . . . ) is sampled from
pθ(τ) = p(s0)

∏
t≥0 πθ(at | st)P(st+1 | st , at).

• A stochastic policy πθ(a | s) is parameterized by θ ∈ Rd .
• We assume bounded rewards |r | ≤ Rmax and differentiable

policies with πθ(a | s) > 0 on support.

J(πθ) , Eτ∼pθ

[ ∞∑
t=0

γtr(st , at)
]

= Eτ∼pθ

[
R(τ)

]
. (1)
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Value Functions

V π(s) = Eπ
[ ∞∑

t=0
γtrt | s0 = s

]
, (2)

Qπ(s, a) = Eπ
[ ∞∑

t=0
γtrt | s0 = s, a0 = a

]
, (3)

Aπ(s, a) = Qπ(s, a)− V π(s). (4)
• The discounted performance objective in terms of the value
functions is

J(πθ) , Eτ∼pθ

[ ∞∑
t=0

γtr(st , at)
]

= Es∼µ(s)
[
V π(s)

]
. (5)

• The policy gradient using the advantage function is

∇θJ(πθ) = Eτ∼pθ

[ ∞∑
t=0

γtAπ(st , at)∇θ log πθ(at | st)
]
. (6)
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Univariate Gaussian Policy

Consider a scalar Gaussian policy

a ∼ πθ(· | s) = N
(
µθ(s), σ2), a ∈ R, s ∈ Rn

Problem
Derive the policy gradient for a Gaussian policy.

Solution:

log πθ(a | s) = −1
2

(
(a − µ)2

σ2 + log(2πσ2)
)
, µ = µθ(s).

Gradients w.r.t. µ and σ:

gµ := ∂

∂µ
log πθ(a | s) = a − µ

σ2

gσ := ∂

∂σ
log πθ(a | s) = (a − µ)2 − σ2

σ3
Chunwei Xing Tutorial on Reinforcement Learning 7 of 24



Gaussian Policy Update Rules

By chain rule, gradients w.r.t. network parameters θ:

∇θ log πθ(a | s) = gµ∇θµθ(s)

Update policy parameters by gradient ascent:

θk+1 = θk + α∇θ log πθ(a | s)Aπ(s, a) (7)

= θk + α
[a − µ
σ2 Aπ(s, a)

]
∇θµθ(s) (8)

= θk + α gµ Aπ(s, a)∇θµθ(s), (9)

σk+1 = σk + β
[(a − µ)2

σ3 − 1
σ

]
Aπ(s, a) (10)

= σk + β gσ Aπ(s, a), (11)
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Comments on the Policy Gradient

• Score function: ∇θ log πθ(a|s) = ∇θπθ(a|s)
πθ(a|s)

• Zero expectation: Ea∼πθ [∇θ log πθ(a|s)] = 0
• Exploration control: When advantage is large, σ increases
for more exploration
• Convergence: When the advantage is positive, the gradient
is large when the action is far from the mean, and the
gradient is close to zero if the action is close to the mean.
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Problem: Gaussian Policy Gradient

Problem
Derive the policy gradient when the policy is parameterized by the
log-standard-deviation ω , log σ, and discuss the stability of the
learning.

Problem
For r(a) = −(a − a∗)2, show gradient ascent on µ converges to a∗
when σ is fixed.
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Additional Problems

Problem
Derive the policy gradient when the state is not fully observed.
What practical changes to make in the algorithm?

Problem
Derive the policy gradient when the action is delayed by N time
step. What practical changes to make in the algorithm?
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Discrete Policy Parametrizations

Direct parametrization:

πθ(a | s) = θs,a

where θs,a ≥ 0 and
∑

a∈A θs,a = 1.
Softmax policy:

πθ(a | s) = exp(θs,a)∑
a′∈A exp(θs,a′)

Log-linear policy:

πθ(a | s) = exp(θ · φ(s, a))∑
a′∈A exp(θ · φ(s, a′))

Neural softmax policy:

πθ(a | s) = exp(fθ(s, a))∑
a′∈A exp(fθ(s, a′))
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Score Function for Discrete Policy

Score function for direct parametrization:

∇θs′,a′ log πθ(a | s) = 1
θs,a
· 1a′=a,s′=s

where 1a′=a,s′=s is the indicator function for action a′ and state s ′.

Problem
Derive the gradient for a discrete action policy, i.e., softmax policy,
log-linear policy, and neural softmax policy.
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Policy Gradient Expressions

The policy gradient can be expressed in three equivalent forms:
• REINFORCE expression:

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

( ∞∑
t=0
∇θ log πθ(at |st)

)]

• Action value expression:

∇θJ(πθ) = Eτ∼pθ

[ ∞∑
t=0

γtQπθ(st , at)∇θ log πθ(at |st)
]

• Baseline expression:

∇θJ(πθ) = Eτ∼pθ

[ ∞∑
t=0

γt [Qπθ(st , at)− b(st)]∇θ log πθ(at |st)
]
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Baseline Invariance Theorem

Theorem (Baseline Invariance)
For any function b : S → R, the estimator
Eτ∼pθ

[∑∞
t=0 γ

t(Gt − b(st))∇ log π(a | s)
]
is unbiased.

Proof.
It’s sufficient to show that Ea∼π(·|s)[∇ log π(a | s) b(s)] = 0.

Ea∼π(·|s)[∇ log π(a | s) b(s)] = b(s) · Ea∼π(·|s)[∇ log π(a | s)]
= b(s) ·

∑
a
π(a | s)∇ log π(a | s)

= b(s) ·
∑

a
π(a | s)∇π(a | s)

π(a | s)

= b(s) · ∇
∑

a
π(a | s) = b(s) · ∇1 = 0.
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Problems

Problem
Since actions at time t cannot affect past rewards, thus one may
replace R(τ) in the REINFORCE expression by the return-to-go

R(τ) =
∞∑

t=0
γtrt , Gt ,

∞∑
k=t

γk−trk , (12)

⇒ ∇θJ(πθ) = Eτ∼pθ

[∑
t≥0

γtGt∇ log πθ(at | st)
]
. (13)

Problem
Derive the action-value expression of the policy gradient from:

J(πθ) = Es0∼µ(s0) [V π(s0)] , µ(s0) , initial state distribution
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Monte Carlo Estimation

Consider the expectation

F (θ) = Eξ∼p(ξ)[f (θ, ξ)]

The gradient is

∇θF (θ) = ∇θ
∫

f (θ, ξ)p(ξ)dξ (14)

=
∫
∇θf (θ, ξ)p(ξ)dξ (15)

= Eξ∼p(ξ)[∇θf (θ, ξ)] (16)

Unbiased gradient estimators:

∇̂θF (θ) = ∇θf (θ, ξ), where ξ ∼ p(ξ) (17)

∇̂θF (θ) = 1
n

n∑
i=1
∇θf (θ, ξi), where ξ1, . . . , ξn ∼ p(ξ) (18)
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REINFORCE: Monte Carlo Policy
Gradient Method

The policy gradient theorem states:

∇θJ(πθ) = Eτ∼pθ

[ ∞∑
t=0

γtGt∇θ log πθ(at |st)
]

In practice, REINFORCE approximates this expectation with
Monte Carlo samples:

∇θJ(πθ) ≈
1
N

N∑
i=1

Ti−1∑
t=0

γtG(i)
t ∇θ log πθ(a(i)

t |s
(i)
t )

where each trajectory (s(i)
0 , a(i)

0 , r (i)
0 , . . .) is a rollout from the

environment.
It estimates the policy gradient using returns from a full
trajectory, without bootstrapping or temporal-difference updates.
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Algorithm: REINFORCE

Algorithm 1 REINFORCE: Monte Carlo Policy Gradient Method
1: Initialize θ, baseline b (e.g., running average or V -critic)
2: for episodes do
3: Sample trajectory τ = (s0, a0, s1, a1, . . . , sT , aT ) under πθ
4: for t = 0, . . . ,T − 1 do
5: Compute return-to-go Gt ←

∑∞
k=t γ

k−trk
6: Compute advantage At ← Gt − b(st)
7: Compute policy gradient gt ← γtAt∇θ log πθ(at | st)
8: Update θ ← θ + α gt
9: end for

10: Update baseline b
11: end for
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Demo
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