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Module Goals (about 3 lectures)
We assume that:

§ You understand machine learning at the level of an introductory class 
e.g. CIS 5190

§ You don’t know much about imitation and reinforcement learning
§ You know a little bit about robots

At the end, you will know:
§ How to cast the problem of robotic control as a sequential decision 

making problem 
§ What the key ideas of imitation learning and reinforcement learning are, 

and sketches of some basic methods for each
§ Broad landscape of imitation and RL, and names and self-study 

references for common approaches



Plan

• What Does Robot Control Look Like? Perception-Action Loops
• How Markov Decision Processes Model Robot Control
• What If Dynamics and Reward are Unknown

§ Imitation Learning
§ Reinforcement Learning

§ Policy Gradients
§ Q Learning, DDPG …
§ Model-based RL (stretch goal)



Robots: Information → Physical Work

Information 
about the world Physical work
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(Robotic) Agent ↔ World: Perception & Action

perception

action

Information 
generation
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Zooming Into Perception-Action Loops

Information 
generation

decision-making

state 
representation sensing

actuation

“Action”

“Perception”



Selective Processing of Information

representation

observation

action

environment
e.g. camera viewpoint

e.g. a floor occupancy map

e.g. planning compute/time 
budget, model fidelity

Information Flow



The Perception-Action Loop (“Fully Observed”)

perception

action

Agent Environment

… is in one of several “states”
!! ∈ #

… “sees” the state !!

… decides how to move

… actually moves, influencing 
the environment to evolve. 

… evolves into a new “state”
!!"# ∈ #



What Robots Can Learn From Data

● Policies: mappings from perceived state !!  to action commands "!
● Dynamics models: models of how agent actions influence the evolution of 

the environment state
● Reward functions: a score indicating how well the robot is performing a 

task.

● State Representations: an encoding of raw sensory inputs 
● What to Sense

● “Common-Sense Knowledge”



Casting Robot Control As A Sequential 
Decision Making Problem
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action at

state st

reward rt

Markov Decision Process Formulation of Control

• Agent receives observations (state st 
Î S) and feedback (reward rt) from 
the world
• Agent takes action at Î A
• Agent receives updated state st+1 and 

reward rt+1

• Agent’s goal is to maximize, loosely speaking, 
“expected rewards in the future”.

Image: https://robots.ieee.org/robots/pr2/

rt+1

st+1

environment

States might have to be 
estimated, e.g., from images
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agent

https://robots.ieee.org/robots/pr2/


MDP Formulation: Notations

Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

An MDP ($, &, ', (, )) is defined by:
• Set of states ! ∈ $
• Set of actions " ∈ 	&
• Transition function or “dynamics model” '(!’	|	!, ") 

oProbability !(#’	|	#, () that ( from # leads to #!
• Reward function /! = 	(	(!, ", !′)
• Discount factor ) < 1, expressing how much we 

care about the future (vs. immediate rewards)
• “utility” = discounted future reward sum ∑! )! /!"#
• Goal: maximize expected utility
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Example

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690


Robots Make Sequential Decisions Too!
Must make a sequence of decisions to 

maximize some success measure/”reward”, 
which is a cumulative effect of the full sequence.

Actions $!:           muscle contractions
Observations %!: sight, smell
Reward &!:           food

motor current or torque
camera images
average speed



Traditional Model-Based Planning (an example)

1. Sample actions and forecast their effects using $(!'|!, ().
2. Select action with best forecasted outcome ∑" +" ,"#$.

If you can predict how the environment will evolve in response to an action 
(and score those predictions), you can select good actions.



Traditional Model-Based Controllers

• Broadly, traditional approaches rely on having near-accurate predictive 
“models” of the environment. E.g. LQR (linear quadratic regulators), MPC 
(model predictive control), H-infinity control, Policy Iteration (dynamic 
programming) …

• The quality of the synthesized controller depends directly on the quality of 
the environment model.



Towards Imitation and Reinforcement Learning

• But in practice, it is too strong of an assumption that 5(. ) and 7(. ) are 
known in advance.

• If we assume no knowledge of '(. ) and ((. ), we are in the position of an 
agent dropped into a completely unknown environment with a completely 
unknown task. How could this even work?

Sidenote: In real problems, we have some knowledge of ((. ) and , . , but this assumption helps study 
algorithms for the most general setting. 



Towards Imitation and Reinforcement Learning
• How might learning even work with unknown dynamics and rewards?

§ Reinforcement Learning:
§ No idea about either !(. ) or .(. ) at the start of training, but we do have the 

ability to try things out in the world, each time experiencing the effects of !(. ) 
and .(. ). 

§ Key Unique Issues: 
§ Exploration: How to acquire useful experience to select a good policy?
§ Credit Assignment: How to figure out which parts of experience were “good” 

(likely to lead to good outcomes) and which were “bad”?
§ More on these later

§ Imitation Learning:
§ No idea about either ! .  or .(. ), but largely circumvents above RL issues by 

having a teacher show us the way!
§ Rather than figure out both how to gather experiences and how to optimize 

policies based on them, we only optimize policies.



Side Note 1: Partially Observed MDPs (POMDPs)
• Most robotics problems are partially observed i.e., you cannot observe the 

full Markov state (or you can only observe it noisily).
§ E.g. an autonomous vehicle cannot see a pedestrian beyond a neighbor 

car. 

• Handling this correctly requires a change to the basic MDP formulation; we 
will not cover this in this tutorial, but instead return to it as our readings 
during the course require.

Reference: Lauri et al, Partially Observable Markov Decision Processes in Robotics: A Survey | IEEE Journals & 
Magazine | IEEE Xplore. T-RO 2022.

https://ieeexplore.ieee.org/abstract/document/9899480?casa_token=VTv3FFoZTUcAAAAA:0EorqHDN50EUya-mIqkxre0eZXnjQeYFVazGRGE-PjenVsi6xE609lSXrXbPQZMduyaTlOtjLA
https://ieeexplore.ieee.org/abstract/document/9899480?casa_token=VTv3FFoZTUcAAAAA:0EorqHDN50EUya-mIqkxre0eZXnjQeYFVazGRGE-PjenVsi6xE609lSXrXbPQZMduyaTlOtjLA


Side Note 2: Other Assumptions in the MDP framework

• Time discretization -> continuous-time MDPs etc.
• Instantaneous !! , "!  at time 8. -> real-time MDP, delay-aware MDPs etc.
• Simple scalar rewards -> constrained MDPs etc.
…



Imitation Learning Through 
Behavior Cloning
Solving sequential decision making problems with supervised learning!



Which year is this from?
“This review investigates two recent developments in artificial 
intelligence and neural computation: learning from imitation and the 
development of humanoid robots. It will be postulated that the study 
of imitation learning offers a promising route to gain new insights 
into mechanisms of perceptual motor control that could ultimately 
lead to the creation of autonomous humanoid robots.”





Robots then



Video from Figure.ai Video from Tesla

Fast forward to 2024



Exciting progress on imitation learning

Video from ALOHA (Zhao et al., 2023) Video from Diffusion Policy (Chi et al., 2023)



When you have lots of data

Video Credit: DeepMind Video Credit: Physical Intelligence



“Policies” for Sequential Decision Making

For any input state of the system, the ML policy model maps it to a decision. 

• This motivates the following input-output structure of the model:
§ Input: state observation, like sight and smell for the dog.
§ Output: actions, like muscle contractions.  

This mapping from input states to a probability distribution over output 
actions (or sometimes just a single deterministic action) is called a decision-
making “policy”, often denoted 9.



Supervised learning of Action Policies?

• Given the current “state” :, make a decision ;< = max
-
9.(<|:). 

§ Supervision => labels for “good” decisions that maximize rewards.
§ So, we’d like to have some dataset of (state :, good decision <∗) pairs. 

Then we could try running supervised learning just as always.

• For the sequential decision making problem, we will use the notation: 
§ state input ! instead of :, 
§ action output " instead of <. 
§ We will often subscript these items with time indices as !!, "!  etc.



Behavior Cloning (BC)
observed states
 s1,  s2, ..., sH
 a1, a2, ..., aH
       actions 

training 
data

supervised 
learning

observed state st action atconvolutional network

expert

An “end-to-end” policy



Behavior Cloning Objective Function
Supervised maximum-likelihood objective to map from states to expert actions.

@A!! = − 1
CD	12#

3
D
!2#

4
log 9.("1,!|!1,!)

1
CD

12#

3
D
!2#

4
∇. log 9.("1,!|!1,!)

trajectories time

Likelihood gradient: 
“Change the policy to 
make these actions 
more likely”. 

Could minimize by following the gradient:

Demonstration data Expert actions



Behavior Cloning (BC) Objective Function

Does this really work?

• Violates i.i.d. assumptions of supervised learning: learner’s prediction affects future 
input observations / states during execution of the learned policy. Will return to this later.

• No connection to the task reward function? Best, we can say is, if .(. ) is bounded e.g. [0, 
-1], then a policy with error rate / on the expert data incurs a reward penalty < 1(2%/)

Supervised maximum-likelihood objective to map from states to expert actions.

@A!! = − 1
CD	12#

3
D
!2#

4
log 9.("1,!|!1,!)

trajectories time
Demonstration data Expert actions



proceedings.neurips.cc/paper/1988/file/812b4
ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf




proceedings.neurips.cc/paper/1988/file/812b4
ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

“the network can accurately drive the NAVLAB at a speed of 1/2 meter per second along a 400 meter path through a 
wooded area of the CMU campus under sunny fall conditions”

https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf


“No Hands Across America” – 1995! No Hands Across America 
Home Page

“On July 23, 1995 Research 
Scientist Dean Pomerleau and 
Ph.D. student Todd Jochem, both 
from the Robotics 
Institute of Carnegie Mellon 
University in Pittsburgh, PA, will 
begin a trans-continental journey 
in their 1990 Pontiac Trans 
Sport. If all goes well, the two 
will end up in San Diego, CA on 
July 30. What makes this trip 
special is that the vehicle will 
drive itself most of the way.”

https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html
http://www.ri.cmu.edu/ri-home.html
http://www.ri.cmu.edu/ri-home.html
http://www.cmu.edu/
http://www.cmu.edu/


Distribution Shift in BC

The cloned policy is imperfect; this leads to “compounding” errors, and the agent soon encounters 
unfamiliar states, leading to failure.

The policy is trained on demonstration data that is different from the data it encounters in the world. 

Note how these errors arise from ignoring the the sequential, interconnected 
nature of the task. Past decisions influence future states!



Compounding Error In Behavior Cloning

Ross and Bagnell 2010, Efficient Reductions for Imitation Learning

Independent-in-time errors Compounding error

Images: Katerina Fragkiadaki

https://proceedings.mlr.press/v9/ross10a.html


“When driving for itself, the 
network may occasionally stray 
from the center of road and so 
must be prepared to recover by 
steering the vehicle back to the 
center of the road.”

- Pomerleau ‘89



What’s Missing: “Recovery” Data

Images: Katerina Fragkiadaki



ALVINN involved Simulated(!) Recovery Data

proceedings.neurips.cc/paper/1988/file/812b4
ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf


Bojarski et al, 2016

Clever Recovery Data Collection For Navigation

Hack to handle limited distributional shift for this specific MDP … exploits 
the geometry of the state and action space.

Dave-2 A Neural Network Drives A Car - YouTube

https://www.youtube.com/watch?v=NJU9ULQUwng


Quadcopter Navigation in the Forest using Deep Neural Networks Giusti et al, RA-L 2016

https://www.youtube.com/watch?v=umRdt3zGgpU&t=1s


Interactive Online BC: DAGGER Ross et al, 2011

A general trick for handling distributional shift: requery expert on new states 
encountered by the initial cloned policy upon execution, then retrain.

1. Train !! ""|$"  from expert data % = $#, "#, … , $$ , "$
2. Execute / “Rollout” !!  to get dataset %% = $#&'( , … , $)&'(
3. Ask expert to label each state in %% with actions ""&'(
4. Aggregate: % ← % ∪ %%

Assumes it is okay to keep asking the expert all through the training process. 
“Queryable experts”. Might not always be practical. 

See also (for an offline, non-interactive variant): Lee et al 2017, DART: Disturbances for Augmentic Robot Trajectories

https://proceedings.mlr.press/v15/ross11a
https://arxiv.org/pdf/1703.09327


Other Policies as “Experts”
● Rather than humans, sometimes the “expert” may be another policy. E.g. 

a policy trained from privileged observations, or a hand-scripted policy, or 
even a “traditional” model-based policy operating on the system state. 

● E.g. ”learning by cheating” [Chen et al, 2020] in simulation: 
○ first train an expert policy to operate from simulator state rather than images (e.g. 

with reinforcement learning, or even a hand-coded program) 

○ Train a vision-based policy to imitate the expert.

https://proceedings.mlr.press/v100/chen20a/chen20a.pdf


BC is akin to how language models are (first) trained

• Language models (LMs) e.g. the GPT family perform “next-token prediction”
§ At test time, they autoregressively predict the next token conditioned on 

their own previous outputs.
@I.(next	response	token	Q/1|previous	response	tokens	U/61; prompt	W)
§ At training time, they are trained with “teacher forcing” on a human-

generated text dataset X. 

LM	Loss = −[7 D
12#,8,…

log @I.(Q/1|/61	; W)

Compare this to:

BC	Loss = − 1
CD	12#

3
D
!2#

4
log 9.("1,!|!1,!)

• Incidentally, after pre-training as above, LMs are typically finetuned with 
“reinforcement learning from human feedback” (RLHF).


