
CIS 7000-04 / ESE 6800 Spring 2025:
Intro To Imitation and Reinforcement Learning

Part II
Thu, Jan 23, 2025

Instructor: Dinesh Jayaraman
Assistant Professor, CIS

46

Bojarski et al, 2016

Recap (with working videos this time)

Dave-2 A Neural Network Drives A Car - YouTubeQuadcopter Navigation in the Forest using Deep Neural Networks
(3:15)

https://www.youtube.com/watch?v=NJU9ULQUwng
https://www.youtube.com/watch?v=umRdt3zGgpU&t=1s

Recap: Where we left off

• Naïve BC treats policy learning as a supervised learning problem: “expert”
provides demos first, and the learner treats the demo as an unordered bag
of state-action pairs to learn 9("!|!!) from.
§ Can be very useful already, but prone to distribution shift ->

compounding errors

• Improvements to provide recovery data:
§ Simulating recovery data, cleverly gathering recovery data alongside

“good” data, interactive online BC (i.e. DAGGER), etc.

Plan for Today

• Wrapping up imitation learning: very brief overview of inverse RL
• Onwards to Reinforcement Learning:

§ From plain BC To Rewards-Informed BC (“offline RL”)
§ … To Online Policy Gradient Approaches for RL

§ The difficulty of online RL
§ Policy gradient expression (w/ proof sketch?)
§ Monte-Carlo approximation and the REINFORCE algorithm

§ … Reducing variance through a ”critic” à value functions

Other Ways to Do Imitation: Inverse RL

● BC might not generalize beyond demonstrations. Instead learn explicitly
about the “reward” function that the demonstrator is trying to maximize?
○ This is called “inverse reinforcement learning”

Would you conclude that this
agent likes / dislikes:
- Blue squares?
- White squares?
- Orange squares?
- Red squares?
- Green square?

Knowing such rewards could
inform more generalizable
imitation, e.g. starting from a
different location than expert.
This usually involves RL.

Stanford Helicopter Stunts with Inverse RL (2008)

Andrew Ng, Pieter Abbeel et al, 2008Autonomous Helicopters Teach Themselves to Fly Stunts – YouTube (2:35)

https://www.youtube.com/watch?v=M-QUkgk3HyE

Injecting reward information into BC

Optimal
actions

Optimal
demonstration data

− 1
CD

12#

3
D
!2#

4
log 9.("1,!|!1,!)

BC objective:

− 1
CD
	12#

3
D
!2#

4
log 9. "1,! !1,! D

:2!,!"#,…
):;!	/1,:

(Non-optimal)
demonstrated actions

(Non-optimal)
demonstrated data

Reward returns: “how
good was this action?”

Reward-weighted regression objective:

Ignores the true objective of the MDP, which
is indicated by the MDP reward function

Injecting Reward Information into BC

Led later to “advantage-weighted regression” [Peng et al 2019]

One of a class of “offline RL algorithms”, that can exploit a pre-recorded
dataset of sub-optimal behaviors by using rewards to find optimal policies.

Jan Peters et al, Relative Entropy Policy Search, AAAI 2010
Peters & Schaal, Reward-weighted regression, ICML 2007

− 1
CD
	12#

3
D
!2#

4
log 9. "1,! !1,! D

:2!,!"#,…
):;!	/1,:

(Non-optimal)
demonstrated actions

(Non-optimal)
demonstrated data

Reward returns: “how
good was this action?”

Reward-weighted regression objective:

https://arxiv.org/abs/1910.00177
https://ojs.aaai.org/index.php/AAAI/article/view/7727
https://dl.acm.org/doi/abs/10.1145/1273496.1273590

RI Seminar: Jan Peters : Motor Skill Learning: From Simple Skills to Table Tennis and Manipulation (29:49)
[2013 results]

https://www.youtube.com/watch?v=73sdZxAtG_4

AWR: Advantage-Weighted Regression (1:29)

https://www.youtube.com/watch?v=ROwJ_O2NINc&embeds_referring_euri=https%3A%2F%2Fxbpeng.github.io%2F&source_ve_path=Mjg2NjY

Tools to Demonstrate Robot Behavior …

Argall et al, 2009

Tools To Demonstrate Robot Behavior: Recent Progress

Open-TeleVision

Stick-V2 (RUM)UMI

Mobile Aloha

https://www.youtube.com/watch?v=d9EQDjU1gyQ&t=7s
https://robotutilitymodels.com/
https://umi-gripper.github.io/
https://mobile-aloha.github.io/

Do we have enough robot data?

diagram credit: Kevin Black

Some Key Limitations of Imitation For Robots
• Data Scarcity
• Demo Sub-optimality
• Multimodality
• Cross-Embodiment
• Teacher-Student Discrepancies
• Safety
• …

More on these in detail when we get around to the module on robot imitation later in the
semester

Going Beyond Imitation

• More broadly, imitation is limited to mimicking experts and cannot discover
new solutions. What about solving new problems, like controlling a new
robot, or trading on the stock market, or beating the world’s best Go
player?

• Reinforcement Learning (next) addresses all this more carefully and
comprehensively.
§ Imitation can be thought of as short-cutting the data collection part of

the broader RL problem, and there are also ways to naturally combine
imitation and RL.

[Online] Reinforcement Learning

B. F. Skinner’s “Operant Conditioning” (1904– 1990)

Project Pigeon - Wikipedia(Go to ~ 0:30)

https://en.wikipedia.org/wiki/Project_Pigeon

Learning Through Trial and Error (+ a curriculum)

Source: the interwebs

Learning Through Trial and Error

The aim of RL is to learn to make sequential decisions in an environment:

• Driving a car
• Cooking
• Playing a videogame
• Controlling a power plant

• Riding a bicycle
• Making movie recommendations
• Navigating a webpage
• Treating a trauma patient

How does an RL agent learn to do these things?
• Assume only occasional feedback, such as a tasty meal, or a car crash, or

video game points.
• Assume very little is known about the “environment” in advance.
• Learn through trial and error.

67

Recap: MDP Formulation Notations

Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

An MDP ($, &, ', (,)) is defined by:
• Set of states ! ∈ $
• Set of actions " ∈ 	&
• Transition function or “dynamics model” '(!’	|	!, ")

oProbability !(#’	|	#, () that (from # leads to #!
• Reward function /! = 	((!, ", !′)
• Discount factor) < 1, expressing how much we

care about the future (vs. immediate rewards)
• “utility” = discounted future reward sum ∑!)! /!"#
• Goal: maximize expected utility

70

Example

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Notation: Rewards, Returns, Utilities, Discounted …

• “reward”: instantaneous reward /! received at one time instant from the
environment
• “return”: sum of (future) rewards

§ Sometimes also called “cumulative reward”, “utility”, etc.
§ By default includes the discount factor i.e. return = ∑!)! /!"#

§ sometimes called the “discounted return” to make this explicit
and distinguish from “(undiscounted) return” = ∑! /!"#.

Outside of this class, lots of confusion, beware! For example:
• Sometimes “reward” ↔“return”
• Sometimes “return” is by default undiscounted, etc.

Online RL is hard!
Entering An Unknown Gridworld

In the shoes of an Online RL agent

Sample RL environment: Grid World
• The agent’s state is one cell ! = ($, &) within the

grid $ ∈ {1,2,3,4} and & ∈ {1,2,3}.
• The agent can execute 4 actions: / =“W”, “E”, “S”,

“N”
For the moment, this is all that that the RL agent
knows about the environment. In particular, it does
not know:
- 1(!’|!, /)

- Which cell would it move to, if it executes an
action from a cell? (e.g. / =“N” from s = (1, 2))

- The result might even be non-deterministic.
- 5 !, /, !!

- What is the instantaneous reward it would get if
it moved from s = 1,2 to s! = (1,3) by
executing action / =“N”?

Based on slide by Dan Klein 73

A random trajectory of an RL agent

s=(1,1)

Time t=0

Action= “N”

A random trajectory of an RL agent

s=(1,1)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=0

Time step t=0 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=1

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=1

Time step t=1 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=2

A random trajectory of an RL agent

Time step t=2 over

Time t=2

s=(1,2)
Action= “N”

s’=(1,3)
Reward = -0.03

A random trajectory of an RL agent

Time t=3 s=(1,3)
Action= “N”

s’=(2,3)
Reward = -0.03

Time step t=3 over

A random trajectory of an RL agent

Time t=4

Time step t=4 over

s=(2,3)
Action= “E”

s’=(3,3)
Reward = -0.03

A random trajectory of an RL agent

s=(3,3)
Action= “E”

s’=(4,3)
Reward = -0.03

Time t=5

Time step t=5 over

A random trajectory of an RL agent

s=(4,3)
Action= “N”

s’= special state “END”
Reward = +1

One “episode”/“trial” of our “episodic task” is over.

Next, the agent respawns in the environment. “Reset”

END

Reset

s=(2,1)
Action=?

s’= ?
Reward = ?

Another episode begins!

Note that we have started at a different point in the grid than last time.
In addition to $, &, ', (,) , there may also be an “initial state probability

distribution” _ over states that the agent is spawned into.

Time t=0

So, can we maximize rewards in this environment?

• What have we learned about this environment after having acquired this
experience?
§ Do we know something about ', (?
§ Do we know how to act optimally now?

We have learned some things, but there is still far too much ambiguity.

Perhaps with more experience …?

Indeed, RL algorithms can acquire sufficient experience and learn optimal policies!

Gridworld Revealed

(Behind The Scenes: The Full Environment)
• A grid map with solid / open cells. Agent(‘s dot) moves between open

cells.
• From terminal states (4,3) and (4,2), any action ends the episode, and

results in a +1/-1 reward respectively.
• For each timestep outside terminal states , the agent pays a small “living”

cost (negative reward): −0.03
• The agent actions N, E, S, W correspond to North, East, South, West

§ But the outcomes of actions are not deterministic!
§ The dot obeys the commanded motion direction 80% of the time
§ 10% of the time, the dot instead executes a different direction

90° off from the agent command. Another 10% of the time, -90°
off.

§ E.g. if dot surrounded by open cells and executing action N, will
end up in the northern cell 80% of the time, in the eastern cell
10% of the time, and in the western cell 10% of the time.

§ The dot stays put if it attempts to move into a solid cell or outside
the world. (Imagine the map is surrounded by solid cells)

• Goal: As always, maximize the sum of discounted future rewards within
an episode Based on slide by Dan Klein 87

Desired Outcome of RL: Optimal Policies

Goal: given some environment, find the optimal policy 9∗ ! : $ → &
• “Optimal” ⟹ Following 9∗ maximizes expected return ∑!)! /!"#

Optimal policy when living cost is
 . #, (, #! = . # = 	−0.03, + = 1.0

 for all non-terminal states #

Example optimal policy 8∗

Based on slide by Dan Klein 99

Parametric Optimal Policies With Continuous States

How is RL Different from Supervised Learning (SL)?

Supervised Learning
• Training dataset: curated in

advance
• Labels: Desired outputs

labeled in advance

Reinforcement Learning
• Training dataset: choose your

own adventure. Trial-and-error
learning.

• Labels: No direct action labels,
just instantaneous rewards /!
which we need to maximize the
sum-over-time of.

RL: Find 9 ! : $ → & that maximizes expected return

SL: Find ℎ : : d → e, that minimizes a loss @ over training (:, <) pairs

103

Unlike supervised learning, RL can find solutions that the problem
specifier did not already know!

Key Problems Specific to RL

In Online RL, we are trying both to gather training data, as well as to
optimize policies based on the data we have observed. This leads to unique
issues.

● Exploration vs Exploitation: Yes, trial-and-error, but what should you try?
○ If only we knew the optimal behaviors, we could go and gather data right around

there (this is, in some sense, the imitation learning solution)

○ But you generally don’t start out knowing the optimal policy.

● Credit assignment: Which actions in a sequence were the good/bad
ones?
○ E.g. at what point did you falter in baking a complex cake, and which steps were

good?

Policy Gradients

Getting Back to The Real Objective

[:!~B"(:) D
!
)!	/1,!

Trajectories obtained by
rolling out the policy

Discounted sum of future
rewards within that policy-

generated trajectory

Note that this policy training objective is expressed as an
expectation over data generated by the policy

9C induces a trajectory distribution, which induces a
reward distribution.

Recall: BC and Reward-Weighted Regression

Optimal
actions

Optimal
demonstration data

1
CD

12#

3
D
!2#

4
∇. log 9.("1,!|!1,!)

BC gradient:

1
CD
	12#

3
D
!2#

4
∇. log 9. "1,! !1,! D

:2!,!"#,…
):;!	/1,:

(Non-optimal)
demonstrated actions

(Non-optimal)
demonstrated data

Reward returns: “how
good was this action?”

Reward-weighted regression gradient:

Both objectives are
expressed over pre-

recorded data
rather than policy-

generated data!

“Vanilla Policy Gradient”

It turns out that the gradient ∇C[B#[∑!)
! /!] works out to:

[:!~B"(:) D
!2#

4
∇. log 9. "1,! !1,! D

:2!,!"#,…
):;!	/1,:

Reward returns: “how
good was this action?”

Policy-generated
actions

Policy-generated
trajectories

(Proofs if time)

We generate our own data during learning … this is trial-and-error learning!
“Make good stuff more likely, and bad stuff less likely”

Policy Gradient Algorithms | Lil'Log Williams 1992 REINFORCE
Sutton, McAllester, Singh, Mansour 1999

Peters & Schaal, Motor skills with policy gradients, 2008

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://papers.nips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://www.sciencedirect.com/science/article/pii/S0893608008000701?casa_token=DVrh6ahC1t8AAAAA:ynooiJhfKD_m41oumvT0OeaHppFpdNLHYci09hc10Uf8naB-ll__g3TzHTn-Z7rOhwOvZDgxsg

