
CIS 7000-04 / ESE 6800 Spring 2025:
Intro To Imitation and Reinforcement Learning

Part III
Thu, Jan 28, 2025

Instructor: Dinesh Jayaraman
Assistant Professor, CIS

116

Where We Left Off: Policy Gradients for RL

The objective of RL is

[:!~B"(:) .
"
+"	/(,"

Its gradient w.r.t. policy parameters h is the “policy gradient”:

0*!~,"(*) .
"/$

0
∇1 log -1 $(," "(," .

2/","#$,…
+24"	/(,2

Reward returns: “how
good was this action?”

Policy-generated
actions

Policy-generated
trajectories

We generate our own data during learning … this is trial-and-error learning!
“Make good stuff more likely, and bad stuff less likely”

For intuition, we started to derive a version of the policy gradient:

Today’s Plan

• Finish policy gradient proof
• Monte Carlo estimates of Policy Gradient
• Understanding “On-Policy” RL and Its Sample Complexity
• Exploration in Policy Gradient algorithms

• An Introduction to “Actor-Critic” algorithms
• An Introduction to Value-Function-Based RL
• An Introduction to Model-Based RL

Step 1 of 2: Writing the gradient as an expectation

i h = [:∼B"(:) / j = k 9. j / j lj

Taking the gradient,

∇.i h = k ∇.9. j / j lj

To make this look like an expectation, we used the log-gradient trick:

∇.i h = k 9. j ∇. log 9. j / j lj = [:∼B" : ∇. log 9. j / j

(Recall: Expectations are easy to approximate, as sample averages)

Do we know this quantity?

Step 2 of 2: Gradient of trajectory log-likelihood
∇. log 9. j =?

Let j =)F, +F,)#, +#, … ,)4 , +4 (PS: finite trajectory case, just to make derivation a little easier,
will generalize)

log 9. j = log _()F) + log 9. +F|)F + log%()#|)F, +F) +	…

log 9. j = log _()F) +D
!
log 9. +!|)! +D

!
log %()!"#|)! , +!)

∇. log 9. j = ∑! ∇.log 9. +!|)!
Plugging into the policy gradient expression!

∇!, - = .*∼%! * /
"
∇!log !! ""|$" 3 4

Final Touch: Adding Causality

The policy gradient that we have derived:

∇.i h = [:!∼B" : D
!
∇.log 9. +1,!|)1,! D

D2F,#,8,…
'D	/1,D

Add causality, and this becomes the most commonly used form of vanilla
policy gradient:

∇.i h = [:!~B"(:) D
!2#

4
∇. log 9. +1,!)1,! D

D2!,!"#,…
'D;!	/1,D

We skip derivation, but the core idea is: actions can only affect future
rewards, so they should be evaluated based on future rewards alone.
Reduces variance in estimates.

“Vanilla Policy Gradient”: Monte Carlo Estimate

[:!~B"(:) D
!2#

4
∇. log 9. +1,!)1,! D

D2!,!"#,…
'D;!	/1,D

Estimated through sampling trajectories 5 by executing policy - in the environment.

1
6.	(/$

5
.
"/$

0
∇1 log -1 $(," "(," .

2/","#$,…
+24"	/(,2

Policy Gradient Algorithms | Lil'Log Williams 1992 REINFORCE Sutton, McAllester, Singh, Mansour 1999

Reward returns: “how
good was this action?”

Policy-generated
actions

Policy-generated
trajectories

Good estimates often require large 7!

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://link.springer.com/content/pdf/10.1007/BF00992696.pdf
https://papers.nips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html

Vanilla Policy Gradient vs. Reward-Wtd Regression

1
6.	(/$

5
.
"/$

0
∇1 log -1 $(," "(," .

*/","#$,…
+*4"	/(,*

(Non-optimal)
demonstrated actions

(Non-optimal)
demonstrated data

Reward returns: “how
good was this action?”

Reward-weighted regression gradient:

Policy gradient:

1
6.	(/$

5
.
"/$

0
∇1 log -1 $(," "(," .

*/","#$,…
+*4"	/(,*

Reward returns: “how
good was this action?”

Policy-generated
actions

Policy-generated
trajectories

Identical expression,
Only difference is the
distribution

The basic policy gradients algorithm

generate samples
(i.e. run the policy)

Evaluate the
samples

improve the policy

Slide: Sergey Levine

Note: Reward function need not be differentiable!

In supervised learning, when we optimized an objective using gradient
descent, we needed the objective to be differentiable w.r.t. to the
parameters h.

In RL, this is not true any more. See how the update term involves no
derivative of the reward function!

“On-Policy” Learning

• The policy gradient increases the likelihood of past actions that yielded
good returns when later actions were generated from the current policy.
• This means you can only ever compute the policy gradient update on data

that is generated from the current policy.
§ “On-policy” learning.
§ Expensive in terms of amount of experience required in the

environment, because old experience, generated from old policies, is no
longer relevant. Need to keep generating fresh new experiences.

§ Also, recall, large C is required for getting good gradient estimates i.e.
lots of fresh new experiences.

∇1	81 =
1
6.	(/$

5
.
"/$

0
∇1 log -1 $(," "(," .

*/","#$,…
+*4"	/(,*

The “Sample Complexity” of Online RL

• Recall that in supervised learning, we often update a neural network ~10^5-
10^6 times on mini-batches to find a solution.
• Policy gradient requires generating a whole new dataset for each update,

generated by executing the current policy many times.
§ Often too sample-inefficient to run on real-world robots, and instead

deployed in highly parallelized simulators. More on this when we
discuss “sim-to-real RL” methods later in the course.

• Gradient descent works best when step sizes are small, but if each gradient
step is very expensive (as in online RL), one might consider more aggressive
updates. Tweaking learning rates like one might in supervised learning
doesn’t work too well.
§ TRPO [Schulman et al 2015], PPO [Schulman et al 2017], etc. propose ways to set the step

size at each update as large as possible without breaking optimization.

https://arxiv.org/pdf/1502.05477
https://arxiv.org/pdf/1707.06347

Recap: Exploration vs Exploitation

• What happens if you execute only your current-best policy all the time?
§ Might not explore enough to discover other solutions.
§ For example, you might never discover a shortcut if you only stick to a

known route to a target.
• What happens if you only execute random actions all the time?

§ Wasteful. You mainly care about states and actions encountered by the
optimal policy.

§ For example, if you keep exploring the city randomly, it will take a really
long time for you to learn any meaningful route to your target.

Exploration vs. Exploitation Tradeoff

142Based on slide by Dan Klein

Whither Exploration In Policy Gradient?

• Exploration in RL: Which actions to execute in the world to most efficiently
learn an optimal policy?
§ But with on-policy RL, do we really have a choice? Remember, our

updates can only be computed from trajectories sampled from the
current policy 9. at each stage of training!

• Two solutions:
§ 9. is inherently stochastic, because it is probabilistic, so it does

automatically perform different actions each time it is executed, and
therefore induces some exploration.

§ Explicitly add an “exploration bonus” to the reward, e.g. entropy
/! ← /! + qr 9. +!)!

which incentivizes more uncertain policies, inducing more exploration.
q → 0 during training.

Popular Implementations

• RL implementation details can be hard to get right. Good to start with
popular repositories: OpenAI stable-baselines, CleanRL etc.

Reducing Policy Gradient Variance
with Critics

Improving the policy gradient “critic”

“reward to go”

su
m to

ge
th

er
 th

es
e r

ew
ard

s

∇"J I ≈ 1
LM#$%

&
M
'$%

(
∇" log Q" R#,' S#,' M

'!$'

(
T S#,'! , R#,'! 	

Slide based on: Sergey Levine

Fitting a " value function
● How to “fit” tB (and what to fit to?)

● If we could arbitrarily reset to any
state infinite times and rollout 9, we
could just compute the average from
the last slide.

● Better way to do this: by maintaining a
table* of Q values for all), + and then
making use of consistency properties
of u(v, w).
○ Enter Bellman Equation.

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Fit U*

Image based on: Sergey Levine

Bellman Equation for "!

• By definition, action-value function for a policy 9 obeys:

expected value over
successor state s’

current reward + discounted future
reward

tB), + = D
V$∈X

%()'|), +) &), +,)' + 'tB)′, 9()')

tB), + = [V$~Y(V$|V,[)[&), +,)' + 'tB)′, 9()')]

≈ &), +,)' + 'tB)′, 9()')

a

s

s, a

s,a,s’
s’

158

U* S, R =] M
'$+

,
^' T'|_+ = S, `+ = R

Calculating #": (Approximate) Policy Evaluation
tF
B), + ← 0 (could also be initialized differently)

Update tD"#B), + to move towards &), +,)' + 'tD
B()', 9)')

For all (), +)

The “fixed point” of this recursive update is indeed the correct tB.
We will skip proof.

generate
samples (i.e.

run the policy)

fit a model to
estimate return

improve the
policy

Fit U*

“actor-critic architecture”

Image based on: Sergey Levine

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
q_values – (N*T) x 1 tensor of estimated state-action values
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = multiply(negative_likelihoods, q_values)
loss = reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

q_values

Other RL Algorithms

But policy gradients and (off-policy) actor-critic approaches are among the
most stable approaches that work most broadly, and take limited wall clock
time even though many samples.

Next: Q learning and actor-critic approaches!

More efficient
(fewer samples)

Less efficient
(more samples)

on-policyoff-policy

evolutionary or
gradient-free
algorithms

on-policy policy
gradient
algorithms

actor-critic
style
methods

off-policy
Q-function
learning

model-based
deep RL

model-based
shallow RL

An Alternative Paradigm: Value-
Function-Based RL

In other words, knowing/learning 6∗ would be sufficient to act optimally (assuming you can solve the argmax)!

"!(%, ') For Optimal)

 Q-value of taking action a in state s then following policy 9	:
 9,(", $) = expected return when taking a in s and then following -

	 	

 Optimal Q-value: t∗), + = tB
∗
), +

Given Q*, can you select optimal actions?
Yes, 9∗	can be greedily determined from Q*: 9∗) = argmax

[
t∗(), +)

Q-state

a

s

s, a

s,a,s’
s’

tB), + = [D
!2F

a
'! /!"#|"F =), $F = +

165

Bellman Equation for optimal "∗ functions

Optimal values are what we get
by picking the optimal action

9, ", $ = 07#~8(7#|7,:)[! ", $, "! + +9, "′, -("!)]

t∗), + = tB
∗
), + = [V$~Y(V$|V,[)[&), +,)' + 'max

b$
t∗)′, +′]

Recall:
;∗ < = argmax

"
6∗(<, C)

192

“Q Learning”

Idea: As we did earlier for policy evaluation in actor-critic, it is once again
possible to treat the single sample you get as a rough estimate of the
expectation, and apply an incremental update to reduce the “Bellman error”:
• Execute a single action + from state) and observe)′ and &:

)+yWz{ = & + 'max
[$

tcde)', +'

• Now, compare this sample to the LHS, and apply the incremental update:
t), + ← tcde), + + | & + 'max

['
tcde)', +' − tcde(), +)

Thus, we can now get the optimal Q from the agent’s trial-and-error
experience. This is called “Q-Learning”. Q iteration + 1-sample-based
incremental update.

193

Bellman error

t∗), + = [V$~Y(V$|V,[)[&), +,)' + 'max
b$

t∗)′, +′]

How to Act During Q-Learning: “Off-policy” vs “On-Policy”

Note that for Q-Learning, we have said nothing about which actions to sample.
• You can act any way you want, and as long as you “explore” the environment

well, Q-Learning will eventually converge to the optimal t∗(), +). “Off-policy”.
• This is different from policy gradients or the kind of actor-critic approach* that

we saw: they rely on updates based exclusively on data generated from the
current best policy. Those are “on-policy” approaches.

Some Simple Schemes for Balancing Explore-Exploit
• } −greedy:

§ At every state,
§ With small probability }, perform a random action
§ Otherwise, follow current best +∗ = argmax[[t), +]

§ Can anneal } over time
§ Intuition: should explore more when you know very little about the

city. After having lots of experience navigating it, there isn’t much
value to exploration any more.

• Track Visitation Counts:
§ Maintain a running count of the number of times C(), +) that you have

tried executing + from state).
§ Select +∗ = argmax[[t), + + 1/C(), +)], inflating the return of states

that you have not visited.

Other RL Algorithms

But policy gradients and (off-policy) actor-critic approaches are among the
most stable approaches that work most broadly, and take limited wall clock
time even though many samples.

Next: Q learning and actor-critic approaches!

More efficient
(fewer samples)

Less efficient
(more samples)

on-policyoff-policy

evolutionary or
gradient-free
algorithms

on-policy policy
gradient
algorithms

actor-critic
style
methods

off-policy
Q-function
learning

model-based
deep RL

model-based
shallow RL

Types of RL algorithms

• Policy gradients: directly differentiate the above objective
• Value-based: estimate value function or Q-function of the optimal policy

(no explicit policy)
• Actor-critic: estimate value function or Q-function of the current policy, use

it to improve policy
• Model-based RL: estimate the transition model, and then…

§ Use it for planning (no explicit policy)
§ Use it to improve a policy
§ Something else

Model-based RL algorithms

generate samples
(i.e. run the policy)

fit a model/
estimate the return

improve the policy

Model-based RL algorithms

• Just use the model to plan (no policy)
§ Trajectory optimization/optimal control (primarily in continuous spaces)

– essentially backpropagation to optimize over actions
§ Discrete planning in discrete action spaces – e.g., Monte Carlo tree

search
• Backpropagate gradients into the policy

§ Requires some tricks to make it work
• Use the model to learn a value function

§ Dynamic programming
§ Generate simulated experience for model-free learner (Dyna)

improve the policy

Examples of RL On Robots

Robotics
Robotics

Open AI Dactyl (2018) Reinforcement Learning for Robust Parameterized
Locomotion Control of Bipedal Robots, 2022

● Guiness world record in 100 meters by biped robots (Oregon State University)

● Learned quadrupedal locomotion in challenging environments (ETH Zurich)

● Autonomous Navigation of Stratospheric Balloons (Google AI), blog (was real, just Google canceled the whole project.. sadly..)

● Not yet perching (article), but soon? Just for inspiration..

● Video games; car racing in video games, competing with humans

● Vision-based autonomous drone racing (video, UZH RPG)

● Commanding robots using natural language to perform tasks (SayCan project, Google)

● behavioral cloning/imitation learning (not RL) is doing well with transformers in the kitchen (Google)

● Yet it is not enough to learn to drive well

● Quadruped learns to walk in the park in 20 minutes, model-free (UC Berkeley)

○ More of this

● Still, dexterous manipulation is not easy.. (Berkeley, Meta, UW)

● Visual Navigation (Berkeley)

● In the need for resets (Berkeley)

More RL for Robotics

Credit: Csaba Szepasvari

https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters
https://www.youtube.com/@AgilityRobotics/videos
https://www.youtube.com/watch?v=9j2a1oAHDL8
https://www.nature.com/articles/s41586-020-2939-8.epdf?sharing_token=JYZ0ZlvEivoTq9RkGfWPQtRgN0jAjWel9jnR3ZoTv0Mh-6OgaxBwChMnw6EOI9v07nMOMJGBruSSDc8BFPfwkG1QQ0R-p9CwTuKA6ZO41aQ8e-Y-ffoWrsFX1cztOZfL5cL1mwXL8qU58Plz4GAzu_SLyawhPWS5QV6GieUEDig%3D
https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html
https://www.youtube.com/watch?v=Kd04quryVPI
https://www.nature.com/articles/s41467-022-35356-5
https://www.wired.com/story/sony-ai-drives-race-car-champ/
https://www.gran-turismo.com/us/gran-turismo-sophy/race-together/
https://www.youtube.com/watch?v=nPlGR83bC0Q
https://say-can.github.io/
https://robotics-transformer.github.io/
https://arxiv.org/abs/2212.11419
https://sites.google.com/berkeley.edu/walk-in-the-park
https://sites.google.com/berkeley.edu/fine-tuning-locomotion
https://sites.google.com/view/dexterous-avail/
https://sites.google.com/view/revind
https://architsharma97.github.io/earl_benchmark/overview.html

RL For Robots: Challenges
• How sample-efficient and stable is RL optimization?
• Does it make sense to ignore that we may know dynamics / physics
%()'|), +)?
§ Simulation, residual learning, robot-aware learning etc.

• Where do you get episode resets from?
§ Reset-free RL etc.

• Where do you get rewards from?
§ Learning from examples, demonstrations etc.

• Is it fair to treat time as discrete?
• Is it fair to treat)! , +�l	+! = 9()!) as happening at the same instant?

§ Delay-aware methods

RL For Robots: Challenges

• Partial observability: is the Markov state actually available to the agent?
§ No! This is particularly important in the context of this class!

• How are demonstrations provided?
• Will learning by trial and error damage my robot / other equipment / me?
• Do I have to learn from scratch for each robot?
• Non-stationarity, e.g. my robot deteriorates over time?

arxiv.org/pdf/2102.02915.pdf

https://arxiv.org/pdf/2102.02915.pdf

